期刊文献+

具有双时滞的耐药菌形成模型的全局稳定性 被引量:1

The global stability of a mathematical model with double delays for the formation of resistant bacteria
下载PDF
导出
摘要 研究了一类具有双时滞的耐药菌形成模型的全局稳定性,得到了体内存在耐药菌的阈值条件R0.当R0≤1时,系统存在唯一的无病平衡点,并且它是全局渐近稳定的.当R0>1时,系统存在流行病平衡点,通过构造Lyapunov泛函证明了它是全局渐近稳定的.进一步利用数值模拟验证了分析的结果. The global stability of a mathematical model with double delays for the formation of resistant bacteria is analyzed.The basic reproduction number R0 is obtained.If the threshold parameter R0≤1,then there is only a disease free equilibrium point which is globally asymptotically stable.On the other hand,if R01,then there is an endemic equilibrium which is globally asymptotically stable by Lyapunov function method.Further,some numerical examples are given to explain our conclusions.
出处 《西北师范大学学报(自然科学版)》 CAS 北大核心 2011年第2期11-15,共5页 Journal of Northwest Normal University(Natural Science)
基金 国家自然科学基金资助项目(10961018) 教育部科学技术研究重点项目(209131)
关键词 时滞 耐药菌 局部渐近稳定性 全局渐近稳定性 delay resistant bacteria local asymptotically stable globally asymptotically stable
  • 相关文献

参考文献10

二级参考文献27

  • 1宋永利,韩茂安,魏俊杰.多时滞捕食-食饵系统正平衡点的稳定性及全局Hopf分支[J].数学年刊(A辑),2004,25(6):783-790. 被引量:27
  • 2SONG Yong-li,WEI Jun-jie.Local Hopf bifurcation and global periodic solutions in a predator-prey system[J] J Math Anal Appl,2005,301:1-21.
  • 3YAN Xiang-ping,LI Wan-tong.Hopf bifurcation and global periodic solutions in a predator-prey system[J].Applied Mathematics and Computation,2006,177:427-445.
  • 4YAN Xiang-ping,LI Wan-tong.Stability and bifurcation in a simplified four-neuron BAM neural network with multiple delays[J].Discrete Dynamics in Nature and Society,2006(2006):1-29.
  • 5YU Wen-wu,CAO Jin-de.Stability and Hopf bifurcation analysis on a four-neuron BAM neural network with time delays[J].Phys Lett A,2006,351:64-78.
  • 6HALE J K.Theory of Functional Differential Equations[M].New York:Springer-Verlag,1977.
  • 7陆征一,周义仓.数学生物学进展[M].北京:科学出版社,2007:40-57.
  • 8INABA H.Threshold and stability results for an age-epidemic model[J].Math Biol,1990,28:411-434.
  • 9SHIM E,FENG Z,MARTCHEVA M,et al.An age-structured epidemic model of rotavirus with vaccination[J].Math Biol,2006,53:719-746.
  • 10LI Xue-zhi,GUPUR G.Global stability of an age-structured SIRS epidemic model with vaccination[J].Discrete and Continuous Dynamical Systems(Series B),2004,4(3):643-652.

共引文献40

同被引文献5

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部