期刊文献+

移动支付中的手机票务用户群体——基于关联规则数据挖掘的实证分析 被引量:4

User Groups' Features of Mobile Payment—An Empirical Analysis Based on Association Rules of Data Mining
原文传递
导出
摘要 为在移动支付业务营销时能够快速找到特征用户群体,本文利用关联规则数据挖掘方法从用户认知、用户需求、使用情况、用后评价、未来使用意愿和影响用户使用因素等多个方面对移动支付中的手机票务领域进行调查分析。通过对1615份有效问卷进行分析,找到最可能使用手机票务的用户群体,从而帮助通信运营商在移动支付推广初期,能够通过快速确定目标客户市场进行精准营销。结果显示,移动支付中的手机票务市场还处于初期,用户认知度较低,潜在用户群体大,已经使用手机票务或有意愿使用的用户大多集中在月支出较高、具有高学历的年轻用户群体。 For quickly locating the specific user groups in the mobile payment market,this paper investigates and analyzes the Mobile Ticketing in mobile payment service from five main aspects,the users' awareness,demand,usage,using willingness and users' evaluation.We use data mining methods of association rules to do analyze 1615 valid questionnaires and locate the user groups who are most likely to use Mobile Ticketing,so as to help the Communication Carriers to lock the target customers market precisely and quickly at the beginning of promotional period of Mobile Payment.The results show that mobile payment market,especially mobile ticketing,is still in the early stage,that the users' awareness is low,that the potential user groups are very big,and that the users who are willing to use mobile payment services are mostly concentrate in young user groups with high monthly expense and high education.
作者 李健民
机构地区 中南大学商学院
出处 《系统工程》 CSSCI CSCD 北大核心 2010年第12期82-90,共9页 Systems Engineering
关键词 关联规则挖掘 移动支付 手机票务 APRIORI算法 用户群体 Association Rules Mobile Payment Mobile Ticketing Apriority Algorithm User Groups
  • 相关文献

参考文献15

二级参考文献113

共引文献198

同被引文献42

  • 1周涛.基于感知价值的移动商务用户接受行为研究[J].杭州电子科技大学学报(社会科学版),2007,3(4):32-36. 被引量:12
  • 2陈华平,唐军.移动支付的使用者与使用行为研究[J].管理科学,2006,19(6):48-55. 被引量:81
  • 3马占欣,周文刚,陆玉昌.基于最小提升率的正负关联规则挖掘[J].计算机工程与应用,2007,43(7):170-172. 被引量:7
  • 4Lee J, Choi Jin Ho. Process selection for business process management in a mobile telecommunications company [J]. International Journal of Information Technology and Management (IJITM), May 2009 (8) : 382-399.
  • 5Zhao Xuefeng, Shu Huaying. A structure analysis and data modeling of telecom product based on product lifecycle management [J]. Research and Practical Issues of Enterprise Information Systems, 2008,255 : 1135-1139.
  • 6Yu Chungching, Chen Yenliang. Mining sequential patterns from multidimensional sequence data, knowledge and data engineering[J]. January, 2005, 17(1):136 140.
  • 7Uz Tansel A, Imberman S P. Discovery ofassociation rules in temporal databases[J] Information Technology, 2007 371-376.
  • 8Antonie M L, Zaiane O R. An associative classifier based on positiveand negative rules [C]// In DMKD'04 Proceedings of the 9th ACM SIGMOD workshop on research issues in data mining and knowledge discovery, New York, NY, USA, ACM Press,2004 : 64-69.
  • 9Soni S, Pillai J, Vyas O P. An associative classifier using weighted association rule[J]. World Congress on Nature Biologically Inspired Computing, NaBIC 2009 : 1492-1496.
  • 10Wu Yuying, Chen Yenliang, Chang R I. Mining negative generalized knowledge from relational databases [J]. Knowledge-Based Systems, February 2011,24(1) : 134-145.

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部