期刊文献+

湮没算符k次幂本征态的Wigner函数及其非经典特性 被引量:2

Wigner functions for the eigenstates of k-th power annihilation operators and their non-classical properties
下载PDF
导出
摘要 利用Fock态表象下的Wigner函数表达式,重构了湮没算符k次幂本征态的Wigner函数,并依据Wigner函数在相空间的分布规律,讨论了湮没算符k次幂本征态的非经典特性。数值结果表明:湮没算符k次幂本征态Wigner函数的分布与复参数α的取值有关;湮没算符1次幂的本征态(即相干态)为准经典态(其Wigner函数值总是非负的),而湮没算符大于或等于2次幂的本征态则都具有明显的非经典特性(它们的Wigner函数均出现了负值)。 Wigner functions for the eigenstates of k-th power annihilation operators are constructed in phase spaces by using their expressions in Fock presentations.Based on the negativities of their relevant Wigner functions,the non-classical properties of these eigenstates are discussed.The numerical results show that, depending on the complex parametersα,the coherent states are quasi-classical(their Wigner functions are always non-negative),but the eigenstates of k-th(k≥2) power annihilation operators are really non-classical (their relevant Wigner functions can be negative in phase spaces).
出处 《量子电子学报》 CAS CSCD 北大核心 2010年第2期187-192,共6页 Chinese Journal of Quantum Electronics
基金 国家自然科学基金资助项目(10874142)
关键词 量子光学 湮没算符 本征态 WIGNER函数 非经典特性 quantum optics annihilation operators eigenstates Wigner functions non-classical property
  • 相关文献

参考文献8

二级参考文献77

共引文献71

同被引文献20

  • 1韦联福.q-玻色湮没算符二次方的本征态[J].物理学报,1993,42(5):757-761. 被引量:11
  • 2王继锁,王传奎.q-玻色湮没算符高次幂的本征态及其性质[J].光学学报,1994,14(10):1043-1048. 被引量:5
  • 3任珉,马爱群,Muhammad Ashfaq Ahmad,曾然,刘树田,马志民.一类q变形广义相干叠加态的量子统计性质[J].物理学报,2007,56(2):845-853. 被引量:1
  • 4Lvovsky A I,Hansen H,Aichele T,et al.Quantum state reconstruction of the single-photon Fock state [J].Phys Rev Lett, 2001,87(5): 050402.
  • 5Hillery M.Amplitude -squared squeezing of the electromagnetic field [J].Phys Rev A, 1987,36(8): 3796- 3802.
  • 6Zdemir K,Miranowicz A,Koashi M,et al.Quantum- scissors device for optical state truncation: A proposal for practical realization [J].Phys Rev A, 2001,64(6): 063818.
  • 7Biedenharn L C. The quantum group SUq(2) and a q- analogue of the boson operators[ J]. J. Phys. A, 1989,22 (17) :L873 -878.
  • 8Wei L F, Wang S J, Xi D P. Inverse q - boson operators and their relation to photon - added and photon - depleted states [ J ]. J. Opt. B : Quantum Semiclass Opt. , 1999,1 (6) : 619 - 623.
  • 9Meng X G, Wang J S. The q - Analogues of Squeezed States and Some Properties [ J ]. Int. J. Theor. Phys. ,2007,46 (5) : 1307 - 1317.
  • 10Macfarlane A J. On q - analogues of the quantum harmonic oscillator and the quantum group SU (2)q[ J ]. J. Phys. , A, 1989,22 (21) : 4581 -4588.

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部