摘要
利用Fock态表象下的Wigner函数表达式,重构了湮没算符k次幂本征态的Wigner函数,并依据Wigner函数在相空间的分布规律,讨论了湮没算符k次幂本征态的非经典特性。数值结果表明:湮没算符k次幂本征态Wigner函数的分布与复参数α的取值有关;湮没算符1次幂的本征态(即相干态)为准经典态(其Wigner函数值总是非负的),而湮没算符大于或等于2次幂的本征态则都具有明显的非经典特性(它们的Wigner函数均出现了负值)。
Wigner functions for the eigenstates of k-th power annihilation operators are constructed in phase spaces by using their expressions in Fock presentations.Based on the negativities of their relevant Wigner functions,the non-classical properties of these eigenstates are discussed.The numerical results show that, depending on the complex parametersα,the coherent states are quasi-classical(their Wigner functions are always non-negative),but the eigenstates of k-th(k≥2) power annihilation operators are really non-classical (their relevant Wigner functions can be negative in phase spaces).
出处
《量子电子学报》
CAS
CSCD
北大核心
2010年第2期187-192,共6页
Chinese Journal of Quantum Electronics
基金
国家自然科学基金资助项目(10874142)
关键词
量子光学
湮没算符
本征态
WIGNER函数
非经典特性
quantum optics
annihilation operators
eigenstates
Wigner functions
non-classical property