期刊文献+

一类分数阶Volterra-Lotka捕食方程渐近稳定性分析 被引量:2

The analysis of asymptotic stability on a fractional differential equation of Volterra-Lotka predator-prey
下载PDF
导出
摘要 通过对一类分数阶Volterra-Lotka捕食方程模型的研究,并利用Krasovskii方法构造出Lyapunov函数,证明了分数阶Volterra-Lotka捕食方程在一定条件下的渐近稳定性。例子仿真说明了充分条件的有效性。 A class of Volterra-Lotka predator-prey fractional equation model is studied with the application of Krasoyskii method,a Lyapunov function is constructed.Therefore,the fractional equation of Volterra-lotka predator is asymptotic stable,which is proved under certain conditions.At last,the simulation of examples show the conditions for the effectiveness.
作者 夏述
出处 《桂林电子科技大学学报》 2010年第6期597-599,共3页 Journal of Guilin University of Electronic Technology
基金 重庆市自然科学基金(2009BB3280)
关键词 渐近稳定性 分数阶微分 K类函数 LYAPUNOV函数 asymptotic stability fractional differential class of functions K Lyapunov function
  • 相关文献

参考文献6

  • 1张锦炎,冯贝叶.常微分方程几何理论与分支问题[M].北京:北京大学出版社,2009:145-149.
  • 2AHMED E,EI-SAYED A M A,EI-SAKA H A A.Equilibrium points stability and numerical solutions of fractional-order predator-prey and rabies models[J].ScienceDirect,2007,325(1):542-553.
  • 3PODLUBNY I.Fractional Differential Equations[M].America:Academic Press,1999:294-296.
  • 4Li Yan,Chen Yangquan,PODLUBNY L.Stability of fractional-order nonlinear dynamic systems:Lyapunov direct method and generalized Mittag-Leffler stability[J].Computers and Mathematicswith Applications,2010,59(5):1810-1821.
  • 5Li Yan,Chen Yangquan,Lgor Podlubny,et al.Mittag-Leffler stability of fractional order nonlinear dynamic systems[J].Automatic,2009,45(8):1965-1969.
  • 6马知恩,周义仓.常微分方程定性与稳定性方法[M].西安:科学出版社,2005:51-53.

共引文献4

同被引文献23

  • 1Tian xiaohong,Xu Rui. Hopf bifurcation of a stage-structured predator-prey model with time delay[J]. Applied Mathematics A Journal of Chinese universities,2010,25(3) :285 - 292.
  • 2Yan X P,Chu Y D. Stability and bifurcation analysis for a delayed Lotka-Volterra predator-preysystem[J]. Journal of Computational and Applied Mathematics ?2006 ,196(1):198-210.
  • 3Abbas S,Banerjee M, Momani S. Dynamical analysis of fractional-order modified logistic model[J]. Computers Mathematics with Applications,2011,62(3) : 1098 - 1104.
  • 4Tian Jinglei, Yu Yongguang, Wang Hu. Stability and bifurcation of two kinds of three-dimensionalfractional Lotka-Volterra system [ J ]. Mathematical Problem in Engineering, 2014 : ArticleID 695871.
  • 5Ahmed E,E1-Sayed A M A, El-Sake H A A. Equilibrium points, stability and numerical solu-tionsof fractional-order predator-prey and rabies models [J]. Mathematical analysis and application,2007,325:542 - 553.
  • 6Margarita R,Juan J T, Luis V, et al. Fractional dynamics of populations[J]. Applied Mathematicsand Computation,2011,218:1089 - 1095.
  • 7Javidi M,Nyamoradi N. Dynamic analysis of a fractional order prey-predator interaction with har~vesting[J]. Applied Mathematical Modelling,2013,37( 20 ):8 946 - 8956.
  • 8Podlubny I. Fractional differential equations : an introduction to fractional derivatives,fractionaldifferential equations,to methods of their solution and some of their applications[M]. Academicprevss ,1998.
  • 9Cicek M,Yakar C, Ogur B. Stability, boundedness and lagrange stability of fractional differentialequations with initial time difference[J]. The Scientific World Journal, 2014 : Article ID 939027.
  • 10Li Y, Chen Y Q,Podlubny I. Stability of fractional-order nonlinear dynamic system: Lyapunov di-rect method and generalized Mittag-Leffler stability [J]. Computers Mathematics with Appli-cations, 2010 ,59 (5) :1810 - 1821.

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部