期刊文献+

求解TSP问题的改进最大最小蚁群算法 被引量:12

Improved algorithm of maximized and minimized ants on solving TSP
下载PDF
导出
摘要 针对基本蚁群算法搜索时间长,易产生停滞现象等缺点,提出一种求解旅行商问题的改进最大最小蚁群算法.通过对有优质解的蚂蚁个体所走路径的信息素τ的最大最小值进行固定及信息素的更新方式的改变,可以避免在算法运行过程中信息素轨迹的差异过大.仿真结果表明,该改进算法有更高的执行效率和更好的计算稳定性. Basic ant colony algorithm to search for a long time,easy to produce stagnation and other shortcomings.We presents a modified algorithm for solving traveling salesman(TSP) problem by use of max-min ant colony algorithm.Solution through a high-quality individuals are taking the path of ants pheromone the maximum and minimum for fixed and update the pheromone change in the way,can easily be avoided during the operation in the algorithm the pheromone path difference is too large.Simulation results show that the improved algorithm has higher efficiency and better stability of the calculation.
出处 《西安工程大学学报》 CAS 2010年第6期818-821,共4页 Journal of Xi’an Polytechnic University
关键词 蚁群算法 旅行商问题 优质解 最大最小化 ant colony algorithm traveling salesman problem(TSP) quality solutions max-min
  • 相关文献

参考文献6

二级参考文献19

  • 1王颖,谢剑英.一种自适应蚁群算法及其仿真研究[J].系统仿真学报,2002,14(1):31-33. 被引量:232
  • 2COOK W. Traveling salesman problem[EB/OL]. Last Updated: January 2007, [2007-06-10], http:// www. tsp. gatech, edu//index, html.
  • 3FOGEL D B. Applying evolutionary programming to selected traveling salesman problems[J]. Cybernetics and System, 1993, 24: 27--36.
  • 4HOPFIELD J J, TANK D W. Neural computation of decisions in optimization problems[J]. Biological Cybernetics, 1985, 52: 141--152.
  • 5WILSON G V, PAWLEY G S. On stability of the traveling salesman problem algorithm of Hopfield and tank[J]. Bio Cybern, 1988, 58: 63--70.
  • 6DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. IEEE Transactions on Evolutionary Computation, 19 9 71 ( 1 ) : 5 3 -- 6 6.
  • 7DORIGO M, GAMBARDELLA L M. Ant colonies for the traveling salesman problem[J]. BioSystems, 1997, 43:73--81.
  • 8DORIGO M, MANIEZZO V, COLORNI A. The ant system: optimization by a colony of cooperating agents[J]. IEEE Transaction on Systems, 1996, 26(1):1--13.
  • 9DORIGO M, CARO G D, GAMBARDELLA L M. Ant algorithms for discrete optimization[J]. Artifi cial Life, 1999, 5(3):137--172.
  • 10COLORNI A, DORIGO M, MAFFIOLI F, et al. Heuristics from nature for hard combinatorial optimization problems[J]. Operational Research, 2001, 3 (1):1--21.

共引文献33

同被引文献122

引证文献12

二级引证文献82

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部