期刊文献+

带有交叉扩散项的Holling-typeⅡ捕食-食饵模型的共存 被引量:12

Stationary patterns for a prey-predator model with Holling type Ⅱ functional response and density-dependent diffusion term
下载PDF
导出
摘要 讨论了带有交叉扩散项的Holling-typeⅡ反应项的捕食-食饵模型在齐次Neumann边界条件下非常数正解的存在性.首先利用最大值原理、上下解方法和Harnack不等式对正解的上下界做了先验估计;其次在先验估计的基础上运用Leray-Schauder度理论证明非常数正解的存在性,并给出了正解存在的充分条件. A predator-prey model with Holling type Ⅱ functional response and Density-Dependent Diffusion Term under homogeneous Neumann boundary condition are discussed.First,by the maximum principle,the lower-upper solution method and Harnack inequality,a priori estimate for upper and lower bounds is discussed.Second,the sufficient conditions for the existence of steady-state solutions are obtained by the priori upper and lower bounds and Leray-Schauder degree theory.
作者 张岳 李艳玲
出处 《纺织高校基础科学学报》 CAS 2010年第4期439-444,共6页 Basic Sciences Journal of Textile Universities
基金 国家自然科学基金资助项目(10971124) 教育部高等学校博士点专项基金项目(200807180004)
关键词 捕食-食饵模型 Holling-typeⅡ LERAY-SCHAUDER度理论 prey-predator density-dependent diffusion Holling type Ⅱ Leray-Schauder degree theory
  • 相关文献

参考文献12

  • 1邵翠,陈文彦.Holling-Ⅱ型和Beddington-DeAngelis响应函数捕食模型的定性分析[J].纺织高校基础科学学报,2009,22(3):321-327. 被引量:7
  • 2OKUBO A,LEVVINL A.Diffusion and Ecological problems:Modern perspective[M].2nd Edition.New York:Springer-Verlag,2001.
  • 3SHIGESADA N,KAWASAKI K,TERAMOTO E.Spatial segregation of interacting species[J].J Theoret Biol,1979,79:83-99.
  • 4LING Z,PEDERSEN M.Coexistence of two species in astrongly coupled coopertive model[J].Math Comput Modelling,2007,45:371-377.
  • 5CHEN B,PENG R.Coexistence states of strong coupled pre-predator model[J].J Partiak Differential Equations,2005,18:154-166.
  • 6WANG M X.Stationary patterns caused by cross-diffusion for a three-species prey-predator model[J].Comput Math Appl,2006,52:707-720.
  • 7黄建科,吴筱宁.具有功能反应的三维捕食系统的周期解[J].纺织高校基础科学学报,2007,20(4):392-395. 被引量:4
  • 8WONLY K,KIMUN R.Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge[J].J Differential Equations,2006,231:534-550.
  • 9吴建华,李艳玲.非线性微分方程(组)的单调方法[J].纺织高校基础科学学报,1996,9(3):229-232. 被引量:1
  • 10LOU Y,NI W,M.Diffusion vs cross-diffusion:an ellipitc approach[J].J Differential Equations,1996,131:157-190.

二级参考文献21

  • 1姚静荪,莫嘉琪.非线性捕食-被捕食反应扩散系统的奇摄动[J].武汉大学学报(理学版),2005,51(3):265-268. 被引量:3
  • 2OuyangCheng MoJiaqi.THE NONLINEAR SINGULARLY PERTURBED PROBLEMS FOR REACTION DIFFUSION EQUATIONS WITH BOUNDARY PERTURBATION[J].Annals of Differential Equations,2005,21(2):177-182. 被引量:10
  • 3许飞,侯燕,林支桂.带时滞的具有阶段结构的捕食抛物型方程组[J].数学学报(中文版),2005,48(6):1121-1130. 被引量:11
  • 4HEI Lijun,YU Ying. Non-constantpositive steadystates of one resource and two consumers model with diffusion [ J ]. J Math Anal Appl, 2008, 339 : 566-581.
  • 5CHEN W Y ,WANG M X. Qualitative analysis of predator-prey model with Beddington-DeAngelis function response and diffusion [ J ]. Mathimatical and Computer Modeling, 2005,42 : 31-44.
  • 6LIU Zhi-Hua, YUAN Rong. Stability and bifurcation in a delayed predator-prey system with Beddington-DeAngelis functional response[J]. Journal of Mathematical Analysis and Applications, 2004, 296: 521-537.
  • 7Beddington J R. Mutual interference between parasites or predators and its effect on searching effficiency[J]. J Animal Ecology, 1975, 44: 331-340.
  • 8CANTRELL R S, COSNER C. On the dynamics of predator-prey models with Beddington-DeAngelis functional response[ J ]. J Math Anal Appl, 2001,257: 206-222.
  • 9KO W, RYU K. Qualitative analysis ofapredator-prey model with Holling-Ⅱ functional response incorporation a prey refuge [ J ]. J Differentional Equations, 2006, 231 : 534-550.
  • 10HWANG T W. Global analysis of the predator-prey system with Beddington-DeAngelis functional response [ J ]. J Math Anal Appl, 2002, 281: 395-401.

共引文献10

同被引文献101

  • 1WANG MingXin,WANG XuBo.Existence, uniqueness and stability of positive steady states to a prey-predator diffusion system[J].Science China Mathematics,2009,52(5):1031-1041. 被引量:7
  • 2徐瑞,郝飞龙,陈兰荪.一个具有时滞和阶段结构的捕食-被捕食模型[J].数学物理学报(A辑),2006,26(3):387-395. 被引量:30
  • 3陈滨,王明新.带有扩散和Beddington-DeAngelis响应函数的捕食模型的正平衡态[J].数学年刊(A辑),2007,28(4):495-506. 被引量:9
  • 4DU Y H, LOU Y. Qualitative behavior of positive solutions of a predator-prey model: Effects of saturation[J]. Proe Roy Soc Edinburgh,2001,131(A):321-349.
  • 5CANTRELL R S,COSNER C. On the dynamics of predator-prey models with the Beddington-DeAmgelisfuncional re- ponse[J]. J Math Anal Appl,2001,257(1):206-222.
  • 6LI Yanling,WU Jianhua. Convergence of solutions for Volterra-Lotka prey-predator systems with time delays[J]. Ap- plied Mathematics Letters, 2009,22 (2) : 170-174.
  • 7WU Jianhua. Global bifurcation of coexistence state for competition model in the chemostat[J]. Nonlinear Analysis, 2000,39(7) :817-835.
  • 8DANCE E N. On positive solutions of some pairs of differential equations[J]. Transactions of the Ameriean Mathemat- ical Society, 1984,284 : 729-748.
  • 9LI L, LOGAN R. Positive solutions to general elliptic competition models[J]. Differential and Interal Equations, 1991, 4(4):817-834.
  • 10AZIA-Alaoui M A. Study of a Leslie-Gower-type tritrophic population model[J]. Chaos Solitons Fractals. 2002 .14(8): 1 275-1 293.

引证文献12

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部