期刊文献+

基于平衡流形的航空发动机LPV建模方法 被引量:2

Equilibrium-manifold based linear parameter varying modeling for aeroengine
原文传递
导出
摘要 针对航空发动机线性变参数模型,基于平衡流形原理,研究了一种改进LPV建模方法。首先,根据平衡流形原理,构造涡扇发动机平衡流形参数化形式。其次,根据某型涡扇发动机非线性模型,建立基于局部线性模型的涡扇发动机准LPV模型。然后,建立基于平衡流形的航空发动机改进准LPV模型,即:利用平衡流形参数化形式,根据调度变量实时估算发动机平衡态,以更新发动机准LPV模型的参考平衡态。最后,通过对发动机从慢车状态到最大状态的阶梯加速过程进行仿真,表明改进LVP模型的稳态和动态响应特性与发动机非线性模型保持很好地一致。 An equilibrium-manifold based LPV(Linear Parameter Varying) modeling method was put forward.Firstly,according to the equilibrium manifold theory,the equilibrium manifold of a turbofan engine was parameterized by a scheduling variable.Then,a conventional LPV model of a turbofan engine was constructed based on the turbofan engine nonlinear model.Next,the conventional LPV model was modified by using the parameterized equilibrium manifold,in which the equilibrium point was estimated in real-time and was used to update the reference equilibrium point in the conventional LPV model.Lastly,a speedup process from idle speed to max speed was simulated with the turbofan engine nonlinear model,the conventional LPV model,and the modified LPV model,separately.The simulation results show that the modified LPV model achieves much higher steady precision and fidelity than the conventional LPV model,which could afford a reliable model to design and analysis the turbofan engine control system.
出处 《推进技术》 EI CAS CSCD 北大核心 2011年第1期21-25,共5页 Journal of Propulsion Technology
关键词 航空发动机 平衡流形 线性变参数模型 调度变量 Aeroengine Equilibrium manifold Linear-parameter-varying(LPV) model Scheduling variable
  • 相关文献

参考文献16

  • 1杨蔚华,孙健国.发动机实时建模技术的新发展[J].航空动力学报,1995,10(4):402-406. 被引量:21
  • 2陈敏,唐海龙,张津.某型双轴加力涡扇发动机实时性能仿真模型[J].航空动力学报,2005,20(1):13-17. 被引量:9
  • 3Balas G J, Ryan J, Shin J Y, et al. A new technique for design of controllers for turbofan engines [ R ]. AIAA 98-3751.
  • 4Reberga L, Henrion D, Bernussou J, et al. LPV modeling of a turbofan engine [ C ]. Prague: 16th FAC World Congress, 2005.
  • 5李华聪,王鑫,韩小宝,孙有田.航空发动机线性变参数建模方法研究[J].推进技术,2007,28(4):418-421. 被引量:16
  • 6Bokor J, Szabo Z,Stikkel G. Invariant subspaces for LPV systems and their applications[ C ]. Lisbon : Proceedings of the lOth Mediterranean Conference on Control and Automation MED 2002, 2002.
  • 7Fen Wu, Stephen Prajna. New solution approach to polynomial LPV system analysis and synthesis [ C ]. USA: Proc. 2004 American Control Conference,2004 : 1362-1367.
  • 8Shahruz S, Behtash S. Design of controllers for linear parameters varying systems by the gain scheduling technique [ J]. Journal of Mathematical Analysis and Applications, 1992, 168(1) : 195-217.
  • 9JamesA Turso, Jonathan S Litt. Intelligent robust control of deteriorated turbofan engines via linear parameter varying quadratic Lyapunov function design [ R]. NASA/TM- 2004-213375.
  • 10Giarre L, BausoD, FalugiP, et al. LPV model identification for gain scheduling control an application to rotating stall and surge control problem [ J ]. Control Engineering Practice, 2006, 14 (4).

二级参考文献47

共引文献48

同被引文献27

  • 1于达仁,隋岩峰.非线性系统平衡流形展开模型[J].系统仿真学报,2006,18(9):2415-2418. 被引量:13
  • 2隋岩峰,于达仁.涡轮发动机平衡流形展开模型辨识方法研究[J].航空学报,2007,28(3):531-534. 被引量:9
  • 3Garg S. Controls and health management technologies for intelligent aerospace propulsion systems[R]. AIAA-2004-0949.
  • 4Garg S. NASA Glenn research in controls and diagnostics for intelligent aerospace propulsion systems[R]. NASA-TM-2005-214036.
  • 5Weiss M,Bucco D. Adjoint method for hybrid guidance loop state-space models [J]. Journal of Guidance,Control,and Dynamics,2014,38(4) : 1-9.
  • 6ZHAO Y,SUN J. Reeursive reduced least squares support vector regression[J]. Pattern Recognition, 2009,42(5) : 837-842.
  • 7Basudhar A,Missoum S. Reliability assessment using probabilistic support vector machines [J]. International Journal of Reliability and Safety, 2013,7(2) : 156-173.
  • 8Ghafir M F A,Li Y G,Wang L. Creep life prediction for aero gas turbine hot section component using artificial neural networks [J]. Journal of Engineering for Gas Turbines and Power, 2014,136 (3) : 1-9.
  • 9Peyada N,Ghosh A. Aircraft parameter estimation using neural network based algorithm [C]//Atmospheric Flight Mechanics Conference. Chicago: AIAA Press, 2009 : 5941-5950.
  • 10Van E, Chu Q P. Sensor fault detection and isolation for redundant air data sensors[R]. AIAA-2014-1147.

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部