期刊文献+

Strong Convergence Theorems for a Family of Quasi-φ-Asymptotically Nonexpansive Mappings 被引量:4

Strong Convergence Theorems for a Family of Quasi-φ-Asymptotically Nonexpansive Mappings
下载PDF
导出
摘要 The purpose of this article is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-φ-asymptotically nonexpansive mappings.Its results hold in reflexive,strictly convex,smooth Banach spaces with the property(K).The results of this paper improve and extend recent some relative results. The purpose of this article is to propose a modified hybrid projection algorithm and prove a strong convergence theorem for a family of quasi-φ-asymptotically nonexpansive mappings.Its results hold in reflexive,strictly convex,smooth Banach spaces with the property(K).The results of this paper improve and extend recent some relative results.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第2期303-314,共12页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No. 10771050)
关键词 quasi-φ-asymptotically nonexpansive mapping hybrid algorithm generalized projection strong convergence theorem quasi-φ-asymptotically nonexpansive mapping hybrid algorithm generalized projection strong convergence theorem
  • 相关文献

参考文献16

  • 1GOEBEL K, KIRK W A. A fixed point theorem for asymptotically nonexpansive mappings [J]. Proc. Amer. Math. Soc., 1972, 35: 271-174.
  • 2SCHU J. Iterative construction of fixed points of asymptotically nonexpansive mappings [J]. J. Math. Anal. Appl., 1991, 158(2): 407-413.
  • 3ZHOU Haiyun, CHO Y J, KANG S M. A new iterative algorithm for approximating common fixed points for asymptotically nonexpansive mappings [J]. Fixed Point Theory Appi. 2007, Art. ID 64874, 10 pp.
  • 4HAUGAZEAU Y. Sur les Inequations Variationnelles et la Minimisation de Fonctionnelles Convexes [M]. These, Universite de Paris, Paris, France, 1968.
  • 5BAUSCHKE H H, COMBETTES P L. A weaktostrong convergence principle for Fejermonotone meshods in Hilbert spaces [J]. Math. Oper. Res., 2001, 26(2): 248-264.
  • 6NAKAJO K, TAKAHASHI W. Strong convergence theorems for nonexpansive mappings and nonexpansive semigroups [J]. J. Math. Anal. Appl., 2003, 279(2): 372-379.
  • 7KIM T H, XU Hongkun. Strong convergence of modified Mann iterations for asymptotically nonexpansive mappings and semigroups [J]. Nonlinear Anal., 2006, 64(5): 1140-1152.
  • 8MATSUSHITA S Y, TAKAHASHI W. A strong convergence theorem for relatively nonexpansive mappings in a Banach space [J]. J. Approx. Theory, 2005, 134(2): 257-266.
  • 9SU Yongfu, QIN Xiaolong. Strong convergence of modified Ishikawa iterations for nonlinear mappings [J]. Proc. Indian Acad. Sci. Math. Sci., 2007, 117(1): 97-107.
  • 10SU Yongfu, WANG Dongxing, SHANG Meijuan. Strong convergence of monotone hybrid algorithm for hemirelatively nonexpansive mappings [J]. Fixed Point Theory Appl., 2008, Art. ID 284613, 8 pp.

同被引文献11

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部