期刊文献+

On w-Linked Overrings

On w-Linked Overrings
下载PDF
导出
摘要 Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring. Let R ■ T be an extension of commutative rings.T is called w-linked over R if T as an R-module is a w-module.In the case of R ■ T ■ Q 0 (R),T is called a w-linked overring of R.As a generalization of Wang-McCsland-Park-Chang Theorem,we show that if R is a reduced ring,then R is a w-Noetherian ring with w-dim(R) 1 if and only if each w-linked overring T of R is a w-Noetherian ring with w-dim(T ) 1.In particular,R is a w-Noetherian ring with w-dim(R) = 0 if and only if R is an Artinian ring.
出处 《Journal of Mathematical Research and Exposition》 CSCD 2011年第2期337-346,共10页 数学研究与评论(英文版)
基金 Supported by the National Natural Science Foundation of China (Grant No. 10671137) Specialized Research Fund for the Doctoral Program of Higher Education (Grant No. 20060636001)
关键词 GV -ideal w-module w-linked w-Noetherian ring GV -ideal w-module w-linked w-Noetherian ring
  • 相关文献

参考文献12

  • 1YIN Huayu. wModules over Commutative Rings [M]. Dissertation for the Doctoral Degree, Nanjing: Libraty of Naajing Unversity, 2010.
  • 2WANG Fanggui, ZHANG Jun. Injective modules over wNoetherian rings [J]. Acta Math Sinica, 2010, 53(6): 1019-1030.
  • 3MATIJEVIG J. Maximal ideal transforms of Noetherian rings [J]. Proc. Amer. Math. Soc., 1976, 54: 49-52.
  • 4WANG Fanggui, MCCASLAND R L. On strong Mori domains [J]. J. Pure Appl. Algebra, 1999, 135(2): 155-165.
  • 5PARK M H. On overrings of serong Mori domains [J]. J: Pure Appl. Algebra, 2002, 172(1): 79-85.
  • 6CHANG G W. Strong Mori domains and the ring D[X]Nv [J]. J. Pure Appl. Algebra, 2005, 197(1-3): 293-304.
  • 7WANG Fanggui. Commutative Rings and StarOperation Theory [M]. Beijing: Science Press, 2006.
  • 8LUCAS T G. Strong Prufer rings and the ring of finite fractions [J]. J. Pure Appl. Algebra, 1993, 84(1): 59-71.
  • 9DOBBS D E, HOUSTON E G, LUCAS T G. On t-linked overrings [J]. Comm. Algebra, 1992, 20(5): 1463-1488.
  • 10WANG Fanggui. wdimension of domains (Ⅱ) [J]. Comm. Algebra, 2001, 29(6): 2419-2428.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部