期刊文献+

一种快速KMSE算法及其在异常入侵检测中的应用 被引量:1

A fast KMSE algorithm and its application on anomaly intrusion detection
下载PDF
导出
摘要 为提高核最小均方误差(Kernel Minimum Squared Error,KMSE)方法的计算效率,利用特征空间中不相关的样本矢量("基样本"),提出了一种快速KMSE算法,并利用"基样本"与一个样本间的核函数对该样本抽取特征.在入侵检测数据集KDDCUP1999和其他基准数据集上实验表明:该方法不仅高效,并且分类和检测效果良好,"基样本"只占训练样本的很小一部分比例,使用它们可以显著提高特征抽取效率. To improve the computational efficiency of the kernel minimum squared error (KMSE) algorithm, we propose a fast KMSE by using the uncorrelated sample vectors, known as basic samples, in the feature space. And we describe the theoretical relationship between the linear correlation of sample vectors in the feature space and the determinant of the kernel matrix. The kernel functions between a sample and the basic samples were used to extract the features from the sample. The Whole basic samples is only a small portion of the training set. The experiments on the intrusion detection dataset KDDCUP1999 and other benchmark datasets show that the fast KMSE is computationally efficient and can achieve high classification accuracy.
出处 《哈尔滨工业大学学报》 EI CAS CSCD 北大核心 2011年第3期90-94,共5页 Journal of Harbin Institute of Technology
基金 国家自然科学基金资助项目(61071179 11061014 60803090 61001037 61065003) 教育部新世纪优秀人才支持计划资助项目(NCET-08-0156 NCET-08-0155) 江西省自然科学基金资助项目(2010GQS0027)
关键词 核最小均方误差 鉴别分析 快速算法 线性相关 入侵检测 Kernel Minimum Squared Error (KMSE) discriminant analysis fast algorithm linear correlation intrusion detection
  • 相关文献

参考文献12

  • 1] TAYLOR S, CRISTIANINI N. Kernel methods for pat- tern analysis [ M ]. London: Cambridge University Press, 2004.
  • 2ZHANG D, SONG F X, XU Y, et al. Advanced pattern recognition technologies with applications to biometrics [ M ]. New York: IGI Global, 2009.
  • 3XU Y, LIN C, ZHAO W. Producing computationally effi- cient KPCA-based feature extraction for classification prob- lems[J1. Electronics Letters, 2010, 46(6) : 452 -453.
  • 4MIKA S, RATSCH G, WESTON J, et al. Fisher dis- criminant analysis with kernels [ C ]//Neural Networksfor Signal Processing IX, 1999. Proceedings of the 1999 IEEE Signal Proceesing Society Workshop. Madison, WI: IEEE Press, 1999:41 -48.
  • 5LIU W F, PUSKAL P, JOSE P. The kernel least-mean- square algorithm [ J ]. IEEE Transactions on Signal Pro- cessing, 2008, 56 (2) : 543 - 554.
  • 6XU Y. A new kernel MSE algorithm for constructing ef- ficient classification procedure [ J ]. International Jour- nal of Innovative Computing, Information and Control, 2009, 5 ( 8 ) : 2439 - 2447.
  • 7CAWLEY G C, TALBOT C. Efficient leave-one-out cross-validation of kernel fisher discriminant classifiers [ J ]. Pattern Recognition, 2003, 36 ( 11 ) : 2585 - 2592.
  • 8ZHENG W M, ZOU C R, ZHAO L. An improved algo- rithm for kernel principal component analysis [ J]. Neu- ral Processing Letters, 2005, 22 ( 1 )~: 49 - 56.
  • 9XU Y, ZHANG D, JIN Z, et al. A fast kernel-based nonlinear discriminant analysis for multi-class problems [J]. Pattern Recognition, 2006, 39(6) : 1026 -1033.
  • 10LEE D, JUNG K H, LEE J. Constructing sparse kernel machines using attractors [ J ]. IEEE Trans on Neural Networks, 2009, 20(4): 721 -729.

二级参考文献4

共引文献45

同被引文献5

引证文献1

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部