期刊文献+

一种结合能量最小和马尔可夫随机场的图像分割方法 被引量:1

Image Segmentation Using Energy Minimization and Markov Random Fields
下载PDF
导出
摘要 提出一种新的基于马尔可夫随机场(Markov Random Field,MRF)的图像分割算法。根据Gibbs分布与MRF的等价性,图像分割问题转换为后验能量函数最小化所对应的标号问题。该文采用图割技术的-αexpansion算法进行后验能量函数的局部最优化,并通过近似于最大期望(EM)算法的迭代过程估算数据模型中的参数。对合成图像和遥感图像的分割实验表明,该方法的运算时间和分割精度都能达到满意的效果。 Image segmentation has been one of the hot fields of computer vision. In this paper, a novel Markov random fields image segmentation algorithm is proposed. According to Gibbs distribution and MRF equivalence, image segmentation problem is transformed to minimize the posterior energy function corresponding to the labeling problem. The energy function can be efficiently minimized using the-expansion move algorithm which is one of the most effective algorithms in graph cuts, and using an iterative process similar to the EM algorithm to estimate the data term parameter. Experimental results are provided to illustrate the satisfactory performance of this method on both synthetic and remote sensing images.
作者 刘峰 龚健雅
出处 《地理与地理信息科学》 CSSCI CSCD 北大核心 2011年第2期38-40,共3页 Geography and Geo-Information Science
关键词 分割 马尔可夫随机场 图割 能量最小 segmentation Markov random fields graph cuts energy minimization
  • 相关文献

参考文献6

  • 1BERTHOD M, KATO Z, YU S, et al. Bayesian image classifica- tion using Markov random fields[J]. Image and Vision Computing, 1996 (14) : 285-295.
  • 2ZHANG Y, BRADY M, SMITH S. Segmentation of brain MR images through a hidden Markov random field model and the Expectation-Maximization algorithm[J]. IEEE Transactions on Medical Imaging, 2001,20( 1 ) : 45- 57.
  • 3张红梅,袁泽剑,蔡忠闽,卞正中.基于层次MRF的MR图像分割(英文)[J].软件学报,2002,13(9):1779-1786. 被引量:13
  • 4BAXTER R J. Exactly Solved Models in Statistical Mechanics [M]. New York.. Academic Press, 1990.
  • 5KATO Z, PONG T C. A Markov random field image segmenta- tion model for color textured images[J]. Image and Vision Computing,2006,24 : 1103-1114.
  • 6KOLMOGOROV V, ZABIH R. What energy functions can be minimized via graph cuts[J]. IEEE Trans. Pattern Anal. Mach. Intell. ,2004,26: 147-159.

二级参考文献12

  • 1Wang, Y., Adali, T., Xuan, J.H., etal. Magnetic resonance image analysis by information theoretic criteria and stochasticsite models. IEEE Transactions on Information Technology in Biomedicine, 2001,5(2):150~158.
  • 2Choi, H.S., Haynor, D.R., Kim, Y. Partial volume tissue classification ofmultichannel magnetic resonance images -? a mixture model. IEEE Transactions on MedicalImaging, 1994,10(9):395~407.
  • 3Santago, P., Gage, H.D. Quantification of MR brain images by mixture density andpartial volume modeling. IEEE Transactions on Medical Imaging, 1993,12(9):566~574.
  • 4Wang, Y., Adali, T., Kung, S.Y., et al. Quantification and segmentation of braintissues from MR images. IEEE Transactions on Image Processing, 1998,7(8):1165~1181.
  • 5Zijdenbos, A.P., Dawant, B.M., Margolin, R.A., et al. Morphometric analysis ofwhite matter lesions in MR images: method and alidation. IEEE Transactions on ImageProcessing, 1994,13(9):716~724.
  • 6Li, S.Z. Markov random field modeling in image analysis. 2th ed., New York, BerlinHeidelberg: Springer-Verlag, 2000. 58~62.
  • 7Cline, H.E., Lorensen, W.E., Kikinis, R., et al. Three dimensional segmentation ofMR images of the head using probability and connectivity. Journal of Computer-AssistedTomography, 1990,14:1037~1045.
  • 8Liang, Z., MacFall, J.R., Harrington, D.P. Parameter estimation and tissuesegmentation from multispectral MR images. IEEE Transactions on Medical Imaging,1994,13(9):441~449.
  • 9Ueda, N., Nakano, R. Deterministic annealing EM algorithm. Neural Networks,1998,11:271~282.
  • 10Dempster, A.P., Laird, N.M., Rubin, D.B. Maximum-Likelihood from incomplete datavia the EM algorithm. Journal of the Royal Statistical Society, 1997,B(39):1~38.

共引文献12

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部