期刊文献+

基于频带能量归一化和SVM-RFE的ECoG分类 被引量:12

ECoG classification based on band power normalization and SVM-RFE
下载PDF
导出
摘要 针对基于运动想象(左手小手指和舌头)的皮层脑电(electrocorticographic,ECoG)信号的分类问题,对BCI2005竞赛数据集I中的ECoG信号使用频带能量(band power,BP)归一化算法提取运动相关电位(movement related potential,MRP)、μ节律和β节律的频带能量作为特征。针对特征提取后维数较高的问题,使用基于支持向量机的回归特征消去(support vector machine recursive feature elimination,SVM-RFE)算法进行特征选择,通过对训练数据集使用10段交叉验证(cross validation,CV)的方法寻找最佳特征组合,确定特征在维数为6时具有最低平均识别错误率,对测试数据集采用同样的方法和同样的组合进行特征提取,并使用线性支持向量机进行分类,分类正确率可以达到93%。 Aiming at the ECoG classification of different imagined movements of left little finger and tongue,BP(band power) normalization algorithm was used to extract MRP(movement related potential),μ rhythm and β rhythm from the ECoG in BCI2005 competitive dataset I.In order to cut down the high dimensions of the extracted features,SVM-RFE was used to select the features that are more suitable for the classification.And a 10-fold cross validation of the training dataset was carried out to search the optimum feature combination,the best feature dimensions of 6 was determined according to the mean classification accuracy of each dimension.Then,all the selected features were fed into a linear SVM to train a model,which could be used to predict the labels of the features also selected by the same way from the testing dataset.And the final classification accuracy is 93%.
出处 《仪器仪表学报》 EI CAS CSCD 北大核心 2011年第3期534-539,共6页 Chinese Journal of Scientific Instrument
关键词 皮层脑电 频带能量 归一化 支持向量机 回归特征消去 交叉验证 ECoG band power normalization SVM RFE cross validation
  • 相关文献

参考文献14

  • 1LEUTHARDT E, SCHALK G, WOLPAW J, et al. A brain-computer interface using electrocorticographic signals in humans[J]. Neural Eng, 2004,1:63-71.
  • 2LAL T N, HINTERBERGER T, WIDMAN G, et al. Methods towards invasive human brain computer interfaces [J ]. Advances in Neural Information Processing System (NIPS), 3)05,17:737-744.
  • 3GRAINMANN B, HUGGINS J, LEVINE S, et al. Towards a direct brain interface based on human subdural recordings and wavelet packet analysis [ J ]. IEEE Trans. Biomed. Eng, 2004,51:954-962.
  • 4SCHALK G, MILLER K J, ANDERSON N R, et al. Two- dimensional movement control using electrocurticographic signals in humans [ J ]. Journal of Neural Engineering, 2008,5 : 75 -84.
  • 5PISTOHL T, BALL T, SCHULZE-BONHAGE A, et al. Prediction of arm movement trajectories from ECoG-reeordings in humans [ J]. Journal of Neuroseienee Methods, 2008,167 : 105-114.
  • 6WEI,Q G, MENG F, WANG Y J, et al. Feature combination for classifying single-trial ECoG during motor imagery of different sessions[J]. Progress in Natural Science, ~007 ,17 :851- 858.
  • 7宋国明,王厚军,刘红,姜书艳.基于提升小波变换和SVM的模拟电路故障诊断[J].电子测量与仪器学报,2010,24(1):17-22. 被引量:36
  • 8刘海松,吴杰长,陈国钧.克隆选择优化的SVM模拟电路故障诊断方法[J].电子测量与仪器学报,2010,24(12):1132-1136. 被引量:12
  • 9SHENOY P, MILLER K J, OJEMANN J G, et al. Generalized features for electrocorticographic BCIs [ J]. IEEE Trans. Biomed. Eng, 2008, 55: 273-280.
  • 10GUYON 1, WESTON J, BARNHILL S. Gene selection for cancer classification using support vector machines [J]. Machine Learning, 2002, 46:389-422.

二级参考文献56

  • 1赵丽,万柏坤,高扬.独立分量分析方法在脑电信号预处理中的应用研究[J].仪器仪表学报,2003,24(z1):496-498. 被引量:8
  • 2王承,陈光,谢永乐.小波-神经网络在模拟电路故障诊断中的应用[J].系统仿真学报,2005,17(8):1936-1938. 被引量:34
  • 3段晨东,何正嘉.一种基于提升小波变换的故障特征提取方法及其应用[J].振动与冲击,2007,26(2):10-13. 被引量:20
  • 4VIRTS J. The third international meeting on brain-computer interface technology: making a difference [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2006,14 ( 2 ) : 126-127.
  • 5VAUGHAN T M. Brain-computer interface technology: a review of the second international meeting [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2003, 11 (2) : 94-109.
  • 6WOLPAW J R, BIRBAUMER N, HEETDERKS W, et al. Brain-computer interface technology: a review of the first international meeting [ J ]. IEEE Trans. Rehabil. Eng. , 2000,8(2) :164-173.
  • 7WOLPAW J R, BIRBAUMER N, MCFARLAND, et al. Brain-computer interface for communication and control [ J ]. Clinical Neurophysiology, 2002,113 (6) :767-791.
  • 8BLANKERTZ B, MULLER K R, et al. The BCI competition III: validating alternative approaches to actual problems [ J ]. IEEE Trans Neural Syst. Rehabil. Eng., 2006,14 (2) : 153-159.
  • 9BLANKERTZ B, MULLER K R, CURIO G, et al. BCI competition 2003--progress and perspectives in detection and discrimination of EEG single trials [ J ]. IEEE Trans. Biomed. Eng. , 2004,51 (6) :1044-1051.
  • 10PFURSTCHELEER G, L da SILVA FH. Event-related EEG/MEG synchronization and desynchronizaiton: basic principles [ J ]. Clinical Neurophysiology, 1999, 110 (11) :1842-1857.

共引文献106

同被引文献115

引证文献12

二级引证文献99

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部