期刊文献+

凸可行问题的一种强收敛算法 被引量:3

A Strongly Convergent Algorithm for the Convex Feasibility Problem
原文传递
导出
摘要 无限维Hilbert空间中,解凸可行问题的平行投影算法通常是弱收敛的.本文对一般的平行投影算法进行改进,设计了一种解凸可行问题的具有强收敛性的新算法.该算法主要是在原有算法基础上引入了一个参数序列,在参数序列满足一定的控制条件下保证了算法的强收敛性.为了简单证明算法的强收敛性,我们构建了一个新的积空间,然后把原空间的这种改进平行投影算法转换为积空间中的交替投影算法.这样,改进的平行投影算法的强收敛性就可以通过交替投影算法的收敛性证明得到. It is well known that the classical parallel projection algorithm for convex feasibility problem in Hilbert space is weak convergent.In this paper,a modification of parallel projection algorithm is presented by introducing a parameter sequence for solving the convex feasibility problem.To prove the strong convergence in a simple way,we introduce a product space.Then,we transmit the modified parallel algorithm in the original space to a aternating one in the product space.Thus,the strong convergence of the modified parallel projection algorithm is derived from the alternating one under some parametric controlling conditions.
出处 《应用数学学报》 CSCD 北大核心 2011年第2期303-312,共10页 Acta Mathematicae Applicatae Sinica
基金 国家自然科学基金(10671126) 上海市重点学科建设(S30501) 上海市研究生创新基金(JWCXSL1001) 河南理工大学青年基金(Q2009-3)资助项目
关键词 凸可行问题 改进的平行投影算法 积空间 强收敛性 convex feasibility problem modified parallel projection algorithm product space strong convergence
  • 相关文献

参考文献19

  • 1Chinneck J W. The Constraint Consensus Method for Finding Approximately Feasible Points in Nonlinear Programs. J. Information and Computing Science, 2004, 16:255-265.
  • 2Deutsch F. Best Approximation in Inner Product Space. New York: Springer-Verlag, 2001.
  • 3Deutsch F. The Method of Alternating Orthogonal Projections, Approximation Theory, Spline Functions and Applications. Dordrecht: Kluwer Academic Publishers, 1992:105-121.
  • 4Censor Y. Parallel Application of Block Iterative Methods in Medical Imaging and Radiation Therapy. Mathematical Programming, 1998, 15:307-325.
  • 5Herman G T. Image Reconstruction from Projections: the Fundamentals of Computerized TomograDhv. New York: Academic Press, 1980.
  • 6Boyd S, Ghaoui L, Feron E, Balakrishnan V. Linear Matrix Inequalities in System and Control Theory. USA: SIAM. Philadlphia, 1994.
  • 7高岩.仿射非线性控制系统生存性的判别[J].控制理论与应用,2009,26(6):654-656. 被引量:21
  • 8Bauschke H H, Borwein J M. On Projection Algorithms for Solving Convex Feasibility Problems. SIAM. Review, 1996, 38:367-426.
  • 9Bauschke H H , Borwein J M, Lewis A S. The Method of Cyclic Projections for Closed Convex Sets in Hilbert Space. Proc. Of the Special Session on Optimization and Nonlinear Analysis, Jerusalem: American Mathematical Society Press, 1995.
  • 10Garcia-palomares U. Parallel Projected Aggregation Methods for Solving the Convex Feasibility Problem. SIAM Journal on Optimization, 1993, 3:882-900.

二级参考文献10

  • 1高岩.一类非线性控制系统关于非光滑区域生存性的判别[J].控制与决策,2006,21(8):923-925. 被引量:14
  • 2罗毅平,邓飞其,胡根生.具连续分布时滞的抛物型系统的变结构控制[J].控制理论与应用,2006,23(4):556-560. 被引量:4
  • 3蔡秀珊,汪晓东,吕干云.具有零动态仿射非线性系统控制Lyapunov函数的构造[J].控制理论与应用,2007,24(3):391-395. 被引量:7
  • 4QUINCAMPOIX M, SEUBE N. Stabilization of uncertain control systems through piecewise constant feedback[J]. Journal of MathematicalAnalysis and Applications, 1998, 218(1): 240- 255.
  • 5GAO Y, LGGEROS J, QUINCAMPOIX M, et al. On the control of uncertain impulsive system: approximate stabilisation and controlled invariance[J]. International Journal of Control, 2004, 77(16): 1393 - 1407.
  • 6GAO Y, LGGEROS J, QUINCAMPOIX M. On the reachability prob, lem of uncertain hybrid systems[J]. IEEE Transactions on Automatic Control, 2007, 52(9): 1572 - 1586.
  • 7AUBIN J E Viability Theory[M]. Boston: Birkhauser, 1991.
  • 8HIRRIART URRUTY J B, LEMARECHAL C. Convex Analysis and Minimization[M]. Berlin: Spdnger-Verlag, 1993.
  • 9DEMYANOV V E RUBINOV A M. Constructive Nonsmooth Analysis[M]. Frankfurt am Main: Peterlang, 1995.
  • 10GARCIA PALOMARES U M. A superlinearly convergence projection algorithm for solving the convex inequality problem[J]. Operations Research Letter, 1998, 22(2/3): 97 - 103.

共引文献20

同被引文献5

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部