期刊文献+

Yamabe流下Laplace算子的第一特征值(英文) 被引量:2

The First Eigenvalue of the Laplace Operator under Yamabe Flow
下载PDF
导出
摘要 本文得到Yamabe流下拉普拉斯算子的第一特征值的发展方程.我们证明出,在光滑的齐性流形(Mn,g)上,若λ(t)表示拉普拉斯算子的特征值,那么沿着规范化后的Yamabe流,λ(t) = d,而且沿着非规范化的Yambe流,λ(t) = dect,这里d是一个常数,c表示齐性流形的数量曲率.而且作为发展方程的应用,我们得到了一些这个流下单调的几何量. In this paper,we derive the evolution equation for the first eigenvalue of Laplace operator along Yamahe flow. We prove that on the smooth homogeneous manifold (Mn ,g0), if λ(t) denotes the first eigenvalue of Laplace operator, then under normalized Yamahe flow, we have λ= d, and we can also get under the unnormalized Yamabe flow,λ(t) == dew , where c is the scalar curvature of smooth homogeneous manifold and d is a constant. Moreover, as applications, we construct some monotonic quantities under this flow.
作者 赵亮
出处 《应用数学》 CSCD 北大核心 2011年第2期274-278,共5页 Mathematica Applicata
基金 Supported by the School Foundation (1008-56YAH10030) and the Youth Foundation of China (11001115)
关键词 拉普拉斯 Yamabe流 特征值 单调性 Laplace operator Yamabe flow Eigenvalue Monotonicity
  • 相关文献

参考文献9

  • 1CAO Xiaodong. First eigenvalues of geometric operators under the Ricci flow[J]. Proceedings of the AMS. , 2008,136 : 4075-4078.
  • 2CAO Xiaodong. Eigenvalues of (-Δ+R/2) on manifolds with nonnegative curvature operator[J]. Math. Ann. ,2007,337(2) :435-441.
  • 3LEI Ni. The entropy formula for linear heat equation[J]. J. Geometry. Annal. , 2004,14: 369-374.
  • 4LI Junfang. Eigenvalues and energy functionals with monotonicity formulae under Ricci flow[J]. Math. Ann. , 2007,388 : 927-946.
  • 5LING Jun. A class of monotonic quantities along the Rieci flow[J/OL], http://arxiv, org/abs/0710. 4291v2.
  • 6MA Li, Eigenvalue monotonieity for the Rieci flow[J]. Annals of Global Analysis and Geometry, 2006, 337(2) : 435-441.
  • 7Perelman G. The entropy formula for the Ricci flow and its geometric applications[J/OL], http://arxiv. org/abs/math/0211159.
  • 8Schoen R, Yau S T. Lectures on differential geometry[C]//Coferrence Proceedings and Lecture Notes in Geometry and Topology, Volume I . Boston.. International Press Publications, 1994.
  • 9YE Rugang. Global existence and convergence of Yamabe flow[J]. J. Differential Geometry, 1982,17: 255-306.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部