期刊文献+

基于PSO优化LS-SVM的短期风速预测 被引量:16

Least squares support vector machine optimized by particle swarm optimization algorithm for short-term wind speed forecasting
下载PDF
导出
摘要 提出了一种基于粒子群(PSO)算法优化最小二乘支持向量机(LS-SVM)的风电场风速预测方法。以相关性较高的历史风速序列作为输入,建立预测模型,并用粒子群算法优化模型参数。在对未来1 h风速进行预测时,文章所提出的模型比最小二乘支持向量机模型及BP神经网络模型具有较高的预测精度和运算速度。算例结果表明,经粒子群优化的最小二乘支持向量机算法是进行短期风速预测的有效方法。 A wind speed forecasting for wind farm based on least squares support vector machine optimized by particle swarm optimization algorithm is proposed. Taking historical wind speed data which have higher correlation as the input, then a forecasting model is built, and by use of particle swarm optimization, the parameters of the model are determined. In the one hour wind speed forecasting of this wind farm ,the proposed wind speed model is compared with wind speed model based on least squares support vector machine (LS-SVM) and that based on back propagation neural network, the comparison results show that the proposed wind speed predicting model is better than these two models in both prediction accuracy and computing speed. The simulation results show that the least squares support vector machine optimized by particle swarm optimization algorithm is an effective method for short-term wind forecasting.
出处 《可再生能源》 CAS 北大核心 2011年第2期22-27,共6页 Renewable Energy Resources
基金 江苏省科技厅工业科技支撑计划项目(BE2009166)
关键词 风速预测 粒子群优化 最小二乘支持向量机 神经网络 wind speed forecasting particle swarm optimization (PSO) least squares support vector machine(LS-SVM) neural network
  • 相关文献

参考文献17

  • 1CADENAS E, RIVERA W.Wind speed forecasting in the south coast of Oaxaca,Mexico [J].Renewable Energy, 2007,32(12) : 2116-2128.
  • 2杨秀媛,肖洋,陈树勇.风电场风速和发电功率预测研究[J].中国电机工程学报,2005,25(11):1-5. 被引量:584
  • 3P A MASTOROCOSTAS, J B THEOCHAIRS, A G BAKIRTZIS. Fuzzy modelling for short term load forecasting using the orthogonal least squares method [J].IEEE Trails Energy Conversion, 1999,14(1): 29- 36.
  • 4潘迪夫,刘辉,李燕飞.风电场风速短期多步预测改进算法[J].中国电机工程学报,2008,28(26):87-91. 被引量:110
  • 5杜颖,卢继平,李青,邓颖玲.基于最小二乘支持向量机的风电场短期风速预测[J].电网技术,2008,32(15):62-66. 被引量:131
  • 6蔡凯,谭伦农,李春林,陶雪峰.时间序列与神经网络法相结合的短期风速预测[J].电网技术,2008,32(8):82-85. 被引量:94
  • 7D A FADARE. The application of artificial neural networks to mapping of wind speed profile for energy application in Nigeria [J]. Applied Energy, 2010,87 : 934-942.
  • 8DAMOUSIS IG,ALEXIADIS MC,THEOCHARIS J B, et al. A fuzzy model for wind speed prediction and power generation in wind parks using spatial correlation [J]. IEEE Transactions on Energy Conversion, 2004,19 ( 2 ) : 352-361.
  • 9MOHAMMAD MONFARED, HASAN RASTEGAR, HOSSEIN MADADI KOJABADI. A new strategy for wind speed forecasting using artificial intelligent methods [J]. Renewable Energy, 2009,34 : 845 - 848.
  • 10R E ABDEL -AAL,M A ELHADIDY,S M SHAAHID. Modeling and forecasting the mean hourly wind speed time series using GMDH-based abductive networks [J]. Renewable Energy, 2009, 34 : 1686-1699:.

二级参考文献79

共引文献937

同被引文献156

引证文献16

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部