期刊文献+

摄像机运动情况下的运动目标检测技术研究 被引量:1

Research on Detection Technology for Motion Targets When the Camera is Moving
下载PDF
导出
摘要 针对视频运动目标检测技术的研究现状,介绍了摄像机运动情况下的视频运动目标检测方法,包括帧间差分法、图像分割法、运动矢量场法等,并对其算法适应性、复杂度、实时性等算法性能方面进行了较为详细的对比分析,详细讨论了各种运动目标检测方法的适用场合和优缺点,从而为不同应用场合下视频运动目标检测方法的选择提供参考依据。 This paper reviews the current development of detection technology for video motion targets, with a comparison of a series of related algorithms, including frame difference method, method based on image segmentation, motion vector field analysis method and others, together with their application ranges, complexity and real-time performance. Based on which the accuracy, the level of real-time and independency are compared to indicate these methods' applicability and limitations.
作者 魏西
出处 《科技信息》 2011年第3期I0046-I0047,共2页 Science & Technology Information
关键词 目标检测 运动摄像机 帧间差分法 图像分割法 运动矢量场法 Target detection Moving camera Frame difference Image segmentation Motion vector
  • 相关文献

参考文献9

  • 1伍翔.频图像中运动目标检测与跟踪方法研究与实现哈尔滨工业大学,2007,7.
  • 2Harris C, Stephens M. A Combined Corner and Edge Detector. Proceedings of 4th Alvey Vision Conference, 1988:147-151.
  • 3Smith S, Brady J. SUSAN - a new approach to low level image processing. International Journal of Computer Vision, 1977,23(1):45-78.
  • 4Lowe D. Distinctive image features from scale-invariant keypoints, International Journal of Computer Vision, 2004, 60(2):91-110.
  • 5Bay H, Tuytelaars T, Gool L. SURF: speeded up robust features. Proceedings of the European Conference on Computer Vision, 2006: 404-417.
  • 6Kass M, Witkin A, Terzopoulos D. Snakes: Active Contour Models. International Journal of Computer Vision,1987:321-331.
  • 7Viola P, Jones M. Robust real time object detection. International Journal of Computer Vision, 2004,57(2):137-154.
  • 8Rogers S, Colombi J, Martin C. Neural networks for automatic target recomaition. Neural Networks.1995.18(7/8):1153-1184.
  • 9王长军,朱善安.基于统计模型和活动轮廓的运动目标检测与跟踪[J].浙江大学学报(工学版),2006,40(2):249-253. 被引量:8

二级参考文献9

  • 1TSAIG Y,AVERBUCH A.Automatic segmentation of moving objects in video sequences:A region labeling approach[J].IEEE Transactions on Circuits and Systems for Video Technology,2002,12(7):597-612.
  • 2ELGAMMAL A,DURAISWAMI R,HARWOOD D,et al.Background and foreground modeling using nonparametric kernel density estimation for visual surveillance[J].Proceedings of the IEEE,2002,90(7):1151-1163.
  • 3DESOUZA G N,KAK A C.Vision for mobile robot navigation:A survey[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2002,24(2):237-267.
  • 4JEFF A.A gentle tutorial of the EM algorithm and its application to parameter estimation for Gaussian mixture and hidden Markov models[R].Berkeley:International Computer Science Institute,1998.
  • 5PARAGIOS N K,DERICHE R.A PDE-based level-set approach for detection and tracking of moving objects[C]// Proceedings of Sixth International Conference on Computer Vision.Washington:IEEE,1998:1139-1145.
  • 6KASS M,WITKIN A,TERZOPOULOS D.Snake:Active contour models[C]// Proceedings of the 1st International Conference on Computer Vision.London:IEEE,1987:259-268.
  • 7CASELLES V,CATTE F,COLL T,et al.A geometric model for active contours[J].Numerische Mathematik,1993,66(1):1-31.
  • 8MALLADI R,SETHIAN J A,VEMURI B C.Shape modeling with front propagation:A level set approach[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1995,17(2):158-175.
  • 9XU C Y,PRINCE J L.Snakes,shapes,and gradient vector flow[J].IEEE Transactions on Image Processing,1998,7(3):359-369.

共引文献7

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部