期刊文献+

基于系数相关性阈值的波原子域叠前地震资料信噪分离方法 被引量:7

Signal and noise separation method for pre-stack seismic data in wave atomic domain based on coefficient correlation threshold
下载PDF
导出
摘要 本文提出了基于波原子域的叠前地震资料信噪分离方法,首先在波原子域进行多尺度分解,然后根据能量集中原则,采用不同尺度间系数相关性分离有效信号和噪声。数值模拟及实际资料的处理表明,基于系数相关性阈值的波原子域叠前地震资料信噪分离方法可以有效压制随机噪声,同时能兼顾抑制部分相干噪声。处理后地震剖面的信噪比得到了大幅提高,反射同相轴更加连续,为后续的处理解释提供了高信噪比的数据。 The signal-noise separation method for pre-stack seismic data in the wave atomic domain was proposed in this paper,at first the multi-scale decomposition was conducted in the wave atomic domain,then based on the energy concentration principle the coefficient correlation for the different scales were utilized to separate effective signal and the noise.The results of numerical simulation and field data processing indicate that the pre-stack seismic data signal-noise separation method which is based on the coefficient correlation threshold in the wave atomic domain could effectively suppresses the random noise,meanwhile it also could restrain some coherent noise.It can be seen that the signal to noise ratio for the processed seismic sections was greatly raised and the reflection events were more continuous,providing high signal to noise sections for the subsequent processing.
出处 《石油地球物理勘探》 EI CSCD 北大核心 2011年第1期53-57,164+169-170,共5页 Oil Geophysical Prospecting
基金 国家自然科学基金项目(40774064)资助
关键词 波原子变换 叠前地震资料 系数相关阈值 信噪分离 coefficient correlation,threshold,wave atom,signal-noise separation
  • 相关文献

参考文献9

  • 1Candes E J. Ridgelets: Theory and Applications[D]. Department of Statistics, Stanford University, USA, 1998,1-166.
  • 2Candes E J, Demanel I. and l)onoho D L. Fast discrete curvelet trans.forms ,applied and computation al mathematics, California Institute Technology, Pas- adena, California, USA, 2005,1 - 43.
  • 3Do M N,Vetterli M. The contourlet transform:an efficiet directional muhiresolution image represenla- tion. IEEE Transactions Image on Processing,2005, 14(12) :2091-2106.
  • 4Donoho D I.. Wedgelets: nearly minimax estimation of edges. Arm Statist, 1999,27 : 859-897.
  • 5Coifman R R, Meyer Y, Quake S, Wiekerhauser M V. Signal processing and compression with wave packets//Meyer Y, Roques S eds. Progress in Wave- let Analysis altd ADPlication. Gif-sur-Yvette, 1993, 77-93.
  • 6Demanet L and Ying L X. Wave atoms and aparsity of oscillatory patterns. Applied and Computational Harmonic Analysis, 2007, 23(3):368-387.
  • 7Neelamani Ramesh, Baumstein AnatolyI, Gillard Dominique Get al. Coherent and random noise atten uation using the curvelet transform. The LeadinA, Edge ,2008, 27(2) :240-248.
  • 8张恒磊,张云翠,宋双,刘天佑.基于Curvelet域的叠前地震资料去噪方法[J].石油地球物理勘探,2008,43(5):508-513. 被引量:34
  • 9Villemoes L. Wavelet packets with uniform time-frequency localization. (7omptes-Rendus Mathematique, 2002. 335(10) :793-796.

二级参考文献6

共引文献33

同被引文献90

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部