期刊文献+

改进主曲线及在手写体数字骨架化中应用研究 被引量:1

Improvement of principal curves algorithm and its application in skeletonization of handwritten digits
下载PDF
导出
摘要 针对主曲线算法初始化步骤效果差、导致所得结果不能正确反映数据的拓扑结构问题,对其进行改进,用连通K近邻代替第一主成分线找到数据的初始拓扑结构。将改进后的算法应用于脱机手写体数字骨架化,实验证明,改进的算法克服了上述缺点,能更好地找到数据的拓扑结构,在时间复杂度、连通性、参数等方面均优于其他改进算法。改进算法适于具有"连通性"的数据。 Principal curves algorithm usually performed not well in initializing,so it ended up with a low accuracy of topology structure.In order to find the primary topology of data,the improved algorithm replaced principal component line with connect K-nearest neighbors in initializing.Tested the improved algorithm by applying to skeletonization of off-line handwritten digits.The results show that the improved algorithm overcomes the shortcoming above-mentioned.It turns out that the improved algorithm performs better than existing methods in computational complexity,connective,parameter,and it is more capable in handling connective data.
出处 《计算机应用研究》 CSCD 北大核心 2011年第4期1598-1600,共3页 Application Research of Computers
关键词 主曲线 连通K近邻 骨架化 手写体数字 principal curve connect K-nearest neighbors skeletonization handwritten digits
  • 相关文献

参考文献18

  • 1HASTIE T, STUETZLE W. Principal curves and surface [ R]. Stanford : Stanford University, 1984.
  • 2张军平,王珏.主曲线研究综述[J].计算机学报,2003,26(2):129-146. 被引量:62
  • 3BANFIELD J D, RAFTERY A E. Ice floe identification in satellite image using mathematical moqhology and clustering about principal curves [ J ]. Journal of the American Statistical Association, 1992, 87(417) :7-16.
  • 4TIBSHIRAN1 R. Principal curves revisited [ J ]. Statistics and Computation, 1992,2 ( 4 ) : 183-190.
  • 5KEGL B, KRZYZAK A, LINDER T, et al. A polygonal line algorithm for constructing principal curves [ C ]//Proc of Conference on Advances in Neural Information Processing System. Cambridge: MIT Press, 1999 : 501 - 507.
  • 6DELICADO P. Another look at principal curves and surfaces [ J ]. Journal of Multivariate Analysis,2001,77( 1 ) :84-116.
  • 7VERBEEK J J, VLASSIS N, KROSE B. A K-segments algorithm for finding principal curves[ J]. Pattern Recognition Letters,2002,23 (8) :1009-1017.
  • 8张炯,李凡长,何书萍,曾劲涛.基于切丛联络的主曲线构建算法[J].微电子学与计算机,2009,26(10):151-153. 被引量:1
  • 9张豪杰,张红云,苗夺谦.基于主曲线的脱机手写英文字母结构特征分析及选取[J].计算机科学,2009,36(10):197-201. 被引量:4
  • 10焦娜,迟呈英,苗夺谦,杨红.基于软K段主曲线算法的字符特征提取研究及实现[J].计算机科学,2006,33(1):229-231. 被引量:4

二级参考文献102

共引文献71

同被引文献16

  • 1蔡忠伟,李建东.基于双谱的通信辐射源个体识别[J].通信学报,2007,28(2):75-79. 被引量:84
  • 2Verbeek J J, Vlassis N, Krt~se B. A soft k-segments algorithm for prin- cipal curves [ M ]//Artificial Neural Networks-ICANN 2001. Springer Berlin Heidelberg, 2001 : 450 -456.
  • 3Choe H C, Poole C E, Yu A M, et al. Novel identification of intereep-ted signals from unknown radio transmitters[ C ]. Proceedings of SPIE, 1995:504 - 517.
  • 4Gillespie B W, Atlas L E. Optimizing time-frequency kernels for clas- sification[ J]. Signal Processing, IEEE Transactions on. 2001, 49 ( 3 ) : 485 - 496.
  • 5Kyu Yu C, Ghosh J. Principal curve classifier-a nonlinear approach to pattern classification [ C ]//Anchorage, AK : 1998.
  • 6Lee T C M, Haonan W. Oh a K-Segments Algorithm for Computing Principal Curves [ C ]//Denver, CO : 2006.
  • 7Willers C J. Application of fractal geometry to modelling nature [ C ]// Communications and Signal Processing, 1988. Proceedings. , COMSIG 88. Southern African Conference on. IEEE, 1988 : 123 - 129.
  • 8Alkan A, Gtinay M. Identification of EMG signals using discriminant analysis and SVM classifier [ J ]. Expert Systems with Applications, 2012, 39(1) : 44-47.
  • 9Rifkin R, Klautau A. In defense of one-vs-all classification [ J ]. The Journal of Machine Learning Research, 2004, 5 : 101 - 141.
  • 10陈慧贤,吴彦华,钟子发,史英春.基于波形骨架的信号细微特征识别[J].现代防御技术,2009,37(4):117-122. 被引量:3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部