期刊文献+

基于相对点矩的SAR图像匹配算法 被引量:2

SAR image matching algorithm based on relative point moment invariants
下载PDF
导出
摘要 为了解决景象匹配导航系统中图像存在旋转误差以及遮挡问题,提出了一种基于相对点矩的SAR图像匹配算法。Harris角点提取算子结合亚像素精确定位算法可以获得高精度的特征点坐标,而Hu不变矩具有平移、旋转、缩放(RTS)不变性,结合两者优点,本文首次提出了相对点矩的概念。相对点矩同样具有RTS不变性,可以实现任意旋转角度下的图像匹配,通过选择合适的特征半径,可以抵抗一定程度的遮挡。针对粗匹配点中存在的误差匹配点,采用相似三角形原理筛选并摒弃;最后,通过最小二乘法给出最优估计值。实验结果表明,该算法满足高精度、实时性和一定的抗干扰要求。 To solve the problem that there exits rotation error and shading in the images of the scene matching aided navigation system, a new matching algorithm for SAR image based on relative point moment invariants is proposed. Feature point coordinates of high precision can be achieved by the Harris corner point operator and the sub-pixel positioning algorithm . When Hu moment invariants with their properties of translation, rotation and scaling(RTS) invariability are combined with high precision feature points, we proposed the concept of relative point moment invariants for the first time. The relative point moment invariants also have the RTS invariability properties,therefore image matching of arbitrary rotation angle can be achieved by using the relative point moment invariants. Moreover, this matching algorithm can resist certain degree of shading. Match points witch error are excluded according to the principle of similar triangles. Finally, the optimal estimation is given by the least square method. Experimental results show that, this algorithm satisfies the high-precision, real-time and certain degree of anti-interference requirements.
出处 《电子设计工程》 2011年第6期146-149,153,共5页 Electronic Design Engineering
基金 国家自然科学基金(60974107) 教育部博士点基金(M0772-034)
关键词 图像匹配 不变矩 HARRIS角点 相似三角形 最小二乘法 image match moment invariants Harris comer points similar triangle principle least square method
  • 相关文献

参考文献14

二级参考文献50

共引文献67

同被引文献11

  • 1冈萨雷斯.数字图像处理[M].阮秋奇,阮宇智,译.2版.北京:电子工业出版社,2009.
  • 2Papakostas G A, Karakasis E G, Koulouriotis D E. Novel moment invariants for improved classification performance in computer vision applications [ J ]. Pattern Recognition. 2010,43 ( 1 ) :58-68.
  • 3Zunic J, Hirota K, Rosin P L. A Hu moment invariant as a shape circularity measure [ J ]. Pattern Recognition, 2010, 43 ( 1 ) ,47 -57.
  • 4Goncalves H, Goncalves J A, Corte-Real L. HAIRIS: A method for automatic image registration through histogram-based image segmentation [ J ]. IEEE Transactions on Image Processing,2011,20(3) :776-789.
  • 5Chae K Y,Dong W P,Jeong C S. SUSAN window based cost calculation for fast stereo matching [ J ]. Lecture Notes in Computer Science ,2005,38 (2) :947-952.
  • 6Shi J, Tomasi C. Good features to track [ A ]. Proceedings CVPR' 94 [ C ]. Seattle, USA: Computer Vision and Pattern Recognition, 1994:593-600.
  • 7林学晶.视频图像拼接技术研究[D].南京:南京理工大学计算机科学与技术学院,2005.
  • 8汪华琴.基于特征点匹配的图像拼接方法研究[M].武汉:华中师范大学出版社,2007.
  • 9张春美,龚志辉,孙雷.改进SIFT特征在图像匹配中的应用[J].计算机工程与应用,2008,44(2):95-97. 被引量:51
  • 10张羽,朱丹,王玉良.一种改进的快速SIFT特征匹配算法[J].微计算机信息,2008,24(33):220-222. 被引量:17

引证文献2

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部