期刊文献+

常微分方程解的存在唯一性定理的教学探索 被引量:2

Explore on the teaching of existence and uniqueness theorem for the solution of ordinary differential equation
下载PDF
导出
摘要 研究了一阶常微分方程的初值问题,通过构造上、下控制函数结合上、下解方法及不动点理论,证明了当非线性项连续时解的存在性,当非线性项Lipschitz连续时解的唯一性.该方法也适用于其它类型的微分方程研究.结合多年的教学与科研经验对"常微分方程解的存在唯一性定理"的课堂教学进行了分析与探讨. The existence and uniqueness of solution for the ordinary differential equation was investigated by constructing the upper and lower control function and using the method of upper and lower solutions as well as fixed point theorem.It was shown that the initial value problem has a solution when the nonlinear term is continuous and has a unique solution when the nonlinear term is Lipschitz continuous.The method is the same with other type of differential equation.Moreover,the classroom teaching of the existence and uniqueness theorem of the ordinary differential equations was discussed and analyzed with years of experience in teaching and scientific research.
作者 王长有
出处 《高师理科学刊》 2011年第2期89-92,共4页 Journal of Science of Teachers'College and University
基金 重庆邮电大学重点课程建设项目(2010ZDKC5)
关键词 常微分方程 上、下解方法 不动点理论 ordinary differential equation upper and lower solution fixed-point theorem
  • 相关文献

参考文献7

  • 1郭大钓,孙经先,刘兆理.非线性微分方程泛函方法[M].济南:山东科技出版社,2005.
  • 2Peano G. Sur le theoreme general relatif a l'existence des integrals des l'equations differentielles ordinaries[M]. Nouv Ann Math, 1892.
  • 3Schauder J P. Zur Theorie Stetiger Abbildungen in Fundtionalraumen[J]. Math Zeit, 1927 ( 26 ) : 47-65.
  • 4时宝,张德存,盖明久.微分方程理论及应用[M].北京:国防工业出版社,2005.
  • 5Wang Changyou. Existence and stability of periodic solutions for parabolic systems with time delays[J]. J Math Anal Appl, 2008, 39 (2) : 1354-1361.
  • 6王长有,安世全,方长杰.一类时滞反应扩散方程的周期解和概周期解[J].应用数学,2007,20(2):281-285. 被引量:3
  • 7王长有.含扩散和时滞的偏微分方程解的振动性[J].生物数学学报,2006,21(1):77-80. 被引量:6

二级参考文献15

  • 1罗琦.一类偏泛函生态模型解的振动性[J].数学物理学报(A辑),1993,13(3):345-352. 被引量:9
  • 2刘希强.一类反应扩散方程组的周期解或概周期解[J].工程数学学报,1994,11(4):107-110. 被引量:5
  • 3何猛省.一类含时滞的反应扩散方程的周期解和概周期解[J].数学学报(中文版),1989,32(1):91-97. 被引量:23
  • 4梁进.不具拟单调条件的反应扩散方程组[J].北京大学学报:自然科学版,1987,(3):9-20.
  • 5郑祖庥.泛函微分方程理论[M].合肥:安徽教育出版社,1992..
  • 6Pao C V.Systems of parabolic equations with continuous and discrete delays[J].J Math Anal Appl,1997,205(1):157-185.
  • 7Ladde G S,Lskshmikantham V,Zhang B G.Oscillation Theory of Differential Equations with Deviating Arguments[M].New York:Marcel Dekker,1987,84-86.
  • 8Pao C V. Periodic solution of parabolic systems with nonlinear boundary condition[J].J M A A, 1999, 234:695-716.
  • 9Fang Wei, Lu Xin. Asymptotic periodicity in diffusive logistic equations with discrete delays [J].Nonlinear Analysis Theory Methods & Applications, 1996,26 (2):171 - 178.
  • 10Li Yongkun,Kuang Yang. Periodic solutions of periodic delay lotka-volterra equations and systems[J].J M A A,200i,255,260-280.

共引文献7

同被引文献20

  • 1孙玉秋,陈圣滔.小议大学数学教学与创新人才培养[J].大学数学,2004,20(4):49-51. 被引量:13
  • 2许先云,杨永清.突出数学建模思想 培养学生创新能力[J].大学数学,2007,23(4):137-140. 被引量:76
  • 3H.Z. Chen, H. Wang. An Optimal-Order Error Estimate on an H1-Galerkin Mixed Method for a Nonlinear Parabolic Equation in Porous Medium Flow[J]. Numer. Methods Partial Differential Equations, 2010, 26:188-205.
  • 4D.Y. Shi, H.H. Wang. Nonconforming H1-Galerkin Mixed FEM for Sobolev Equations on Anisotropic Meshes[J]. Acta Mathematicae Applicatae Siniea,English Series, 2009, 25(2): 335~344.
  • 5H.T. Che, Z.J. Zhou, Z.W. Jiang, Y.J. Wang. H1-Galerkin Expanded Mixed Finite Element Methods for Nonlinear Pseudo-Parabolic Integro-Differential Equations[J]. Numer. Methods Partial Differential Equations, 2013, 29(3): 799~817.
  • 6Y. Liu, H. Li, J.F. Wang, S. He. Splitting Positive Definite Mixed Element Methods for Pseudo-Hyperbolic Equations[J]. Numer. Meth- ods Partial Differential Equations, 2012, 28(2): 670~688.
  • 7Y. Liu, J.F. Wang, H. Li, W. Gao, S. He. A New Splitting H1-Galerkin Mixed Method for Pseudo-Hyperbolic Equations[J]. World A cademy of Science, Engineering and Technology, 2011, 51:1444-1449.
  • 8H. Guo. Analysis of Split Weighted Least-Squares Procedures for Pseudo-Hyperbolic Equations[J]. Applied Mathematics and Compu- tation, 2010, 217(8): 4109~4121.
  • 9Z.J. Zhou. An SH^l$-Galerkin Mixed Finite Element Method for a Class of Heat Transport Equations[J]. Applied Mathematical Mod- elling, 2010, 34(9): 2414~2425.
  • 10鲜大权.常微分方程解的存在唯一性定理教学研究[J].大学数学,2009,25(6):197-202. 被引量:4

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部