期刊文献+

孔径分布对横向剪切干涉仪波前复原的影响 被引量:2

Effect of Aperture Distribution on Wavefront Recovery of Lateral Shearing Interferometer
原文传递
导出
摘要 通过引入波面的二阶导数对传统的最小二乘法(LSM)进行了改进;利用改进后的LSM分别分析了单个方向和相互正交两个方向的横向剪切数据,并将改进后的LSM与网格点法和积分法复原波前的空间特性进行了比较;利用相互正交两个方向的横向剪切数据分别分析了环形孔径和复杂孔径横向剪切干涉仪(LSI)波前复原的频率响应和空间分布特性,并进行了仿真验证。证实了对于任意形状的光阑,利用改进的LSM可以从相互正交的两个方向的剪切干涉图中提取对应光阑部分的相位。 The traditional least squares method(LSM) is improved by introducing the second derivative of the detected wave-front.Both the shearing data along one direction and two orthogonal directions are analysed using the improved LSM.And the spatial distribution of the wave-front recovered by the proposed method is compared with that of recovered by the gridding method and the integration method.The frequency response and the aperture spatial distribution characters of the wavefront recovery of lateral shearing interferometer are also analysed respectively to the annualar aperture and the combined one using the two orthogonal latering shearing data.The simulation results show the wave-front confined by any aperture could be recovered from two orthogonal lateral shearing data using the proposed algorithm.
出处 《光学学报》 EI CAS CSCD 北大核心 2011年第4期7-12,共6页 Acta Optica Sinica
基金 国家863计划资助课题
关键词 测量 横向剪切干涉仪 最小二乘法 光阑 频率响应 空间分布特性 measurement lateral shearing interferometer least-squares method aperture frequency response spatial response
  • 相关文献

参考文献13

  • 1D. Malacara. Twyman-Green Interferometer [M]// D. Malaeara. Optical Shop Testing. New York: Wiley Press, 1978: 47-76.
  • 2M. V. R. K. Murty. Fizeau Interferometer [M]// D. Malacara. Optical Shop Testing. New York: Wiley Press, 1978: 19-34.
  • 3M. Servin, M. Cywiak. Lateral shearing interferometry: theoretical limits with practical consequences[J]. Opt. Express, 2008, 15(26): 17805-17808.
  • 4C. Falldorf, Y. Heimbach, C. V. Kopylow. Efficient reconstructin of spatially limited phase distribution from their sheared representation [ J ]. appl. Opt. , 2007, 46 ( 22 ) 5038-5043.
  • 5高必烈.剪切干涉仪的定量处理数学原理及采样处理技巧[J].光学仪器,2001,23(3):31-41. 被引量:5
  • 6P. Ferraro, S. De Nicola. Reflective grating interferometer: a folded reversal and shearing wavefront interferometer[J].Appl. Opt. , 2002, 41(2): 342-347.
  • 7M. P. Rimmer, J. C. Wyant. Method for evaluating lateral shearing interferometry [J]. Appl. Opt. , 1974, 13 (3): 623-629.
  • 8H. Schreiber, J. Schwider. Lateral shearing interferometer based on two Ronchi phase gratings in series[J]. Appl. Opt. , 1997, 36(22) : 5321-5324.
  • 9S. Okuda, T. Nomura, K. Kamiya a al.. High-precision analysis of a lateral shearing interferogram by use of the integration method and polynomials [J]. Appl. Opt., 2000, 39(28): 5179-5186.
  • 10M. Servin, D. Malacara, J. L. Marroquin. Wave-front recovery from two orthogonal sheared interferograms[J]. Appl. Opt. , 1996, 35(22) : 4343-4348.

二级参考文献3

  • 1[1]Daniel Malacara.Optical Shop Testing[M].New York;John Wiley & Sons,Inc.,1978:105~148.
  • 2[2]Wyant J C. Use of an AC Heterodyne Lateral Shear Interferometer with Real-Time Wavefront Correction System[J].Appl.Opt.,1975,14:2622.
  • 3[3]Thomas D A,Wyant J C.High Efficiency Grating Lateral Shear Interferometer [J].Opt.En.,1976,15:477.

共引文献7

同被引文献35

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部