期刊文献+

具有统计不相关性的核化图嵌入算法 被引量:1

Uncorrelated kernel extension of graph embedding
原文传递
导出
摘要 提出统计不相关的核化图嵌入算法,为求解各种统计不相关的核化降维算法提供了一种统一方法。与已有核化降维算法相比,新的特征提取方法降低甚至消除了最佳鉴别矢量间的统计相关性,提高了识别率。通过在ORL,YALE和FERET人脸库上的实验结果表明,提出的具有统计不相关的核化图嵌入算法在识别率方面好于已有的核算法。另外,揭示了统计不相关的核化图嵌入与已有的核化图嵌入的内在关系。 An uncorrelated kernel extension of graph embedding which provides a unified method for computing all kinds of uncorrelated kernel dimensionafity reduction algorithms is proposed. Compared with kernel dimensionality reduction methods, the proposed method is better in terms of reducing or eliminating the statistical correlation between features and improving the recognition rate. The experimental results on ORL, YALE and FERET face databases show that the proposed nncorrelated kernel extension of graph embedding method is better than other methods in terms of recognition rate. Besides, the relation between uncorrelated kernel extension of graph embedding and kernel extension of graph embedding is revealed.
出处 《中国图象图形学报》 CSCD 北大核心 2011年第4期618-624,共7页 Journal of Image and Graphics
基金 国家高技术研究发展计划(863)项目(2006AA01Z119) 国家自然科学基金项目(60873151 60632050) 高等学校博士学科点专项科研基金项目(20060288013) 江苏省2010年度普通高校研究生科研创新计划项目(178)
关键词 最佳鉴别矢量 统计不相关 核化图嵌入 optimal discriminant vectors statistically uncorrelation kernel extension of graph embedding (KGE)
  • 相关文献

参考文献13

  • 1Fukunaga K.Introduction to Statistical Pattern Recognition[M].2 nd Edition.Boston:Academic Press,1990:400-417.
  • 2Duda R O,Hart P E,Stork D G.Pattern Classification[M].2nd Edition.New York:John Wiley & Sons,2000:117-124.
  • 3Belhumeur P N,Hespanha Joao P,Kriegman David J.Eigenfaces va.Fishefaces:recognition using class specific linear projection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 4He Xiaofei,Yan Shuicheng,Hu Yuxiao,et al.Face recognition using Laplacianfaces[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2005,27 (3):328-340.
  • 5Yang Jian,Zhang D,Yang Jingyu,et al.Globally maximizing,locally minimizing:unsupervised discriminant projection with applications to face and palm biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29 (4):650-664.
  • 6He X,Cai D,Yan S,et al.Neighborhood preserving embedding[C]//Proc.Int.Conf.Computer Vision,USA:Curran Associates,Inc,2005:1208-1213.
  • 7Deng Weihong,Hu Jiani,Guo Jun,et al.Comments on globally maximizing,locally minimizing:unsupervised discriminant projection with applications to face and palm biometrics[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(8):1503-1504.
  • 8Cai D,He X,Hu Y,et al.Learning a spatially smooth subspace for face recognition[C]//Proc.IEEE Conf.Computer Vision and Pattern Recognition.Minneapolis,USA:Curran Associates,Inc,2007:1-7.
  • 9Cai Deng,He Xiaofei,Han Jiawei.Spectral Regression for Dimensionality Reduction,Department of Computer Science Technical Report No.2856[R].Urbana,USA:University of Illinois at Urbana Champaign,2007.
  • 10Yan S,Xu D,Zhang B,et al.Graph embedding and extensions:a general framework for dimensionality reduction[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2007,29(1):40-51.

共引文献50

同被引文献9

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部