摘要
Microstructural evolution and the relationship between microstructure and property during heat treatments in a new NiAl-based alloy(Ni-26.6Al-13.4Cr-8.1Co-4.3Ti-1.3W-0.9Mo,molar fraction,%))were investigated.The as-cast alloy is composed of NiAl matrix and Cr3Ni2 phase with poor ductility.The Cr3Ni2 phase is distributed as a network along the NiAl grain boundaries.Subsequent heat treatment(1 523 K,20 h,air cooling+1 123 K,16 h,furnace cooling)leads to the dissolution of Cr3Ni2 phase and the precipitation of lath-shaped Ni3Al phase andα-Cr particles,resulting in the improvement of compressive properties and fracture toughness at room temperature.Followed by long-term thermal exposure(1 173 K,8 500 h),it is found that the residual Cr3Ni2 phase keeps stable while theα-Cr particles coarsen and a great mass of lath-shaped Ni3Al precipitates are degenerated,which compromises most of the above improvements of mechanical properties through heat treatment.
Microstructural evolution and the relationship between microstructure and property during heat treatments in a new NiAl-based alloy(Ni-26.6Al-13.4Cr-8.1Co-4.3Ti-1.3W-0.9Mo,molar fraction,%))were investigated.The as-cast alloy is composed of NiAl matrix and Cr3Ni2 phase with poor ductility.The Cr3Ni2 phase is distributed as a network along the NiAl grain boundaries.Subsequent heat treatment(1 523 K,20 h,air cooling+1 123 K,16 h,furnace cooling)leads to the dissolution of Cr3Ni2 phase and the precipitation of lath-shaped Ni3Al phase andα-Cr particles,resulting in the improvement of compressive properties and fracture toughness at room temperature.Followed by long-term thermal exposure(1 173 K,8 500 h),it is found that the residual Cr3Ni2 phase keeps stable while theα-Cr particles coarsen and a great mass of lath-shaped Ni3Al precipitates are degenerated,which compromises most of the above improvements of mechanical properties through heat treatment.