期刊文献+

基于PSO-LSSVM的网络化制造系统安全检测

Security detection for networked manufacture system based on least square support vector machine optimized by particle swarm optimization
下载PDF
导出
摘要 为了解决传统网络化制造系统安全检测技术检测精度低的难题,提出基于粒子群优化最小二乘支持向量机(PSO-LSSVM)的网络化制造系统安全检测方法。首先,确定网络化制造系统安全检测特征,并对特征进行预处理。然后,建立基于粒子群优化最小二乘支持向量机的网络化制造系统安全检测模型。最后,通过实例证明该方法的有效性及优越性。分别采用人工神经网络、支持向量机与PSO-LSSVM方法进行对比分析,实验结果表明,PSO-LSSVM对网络化制造系统的安全检测性能优于神经网络与支持向量机的安全检测性能。 In order to solve the problem of poor detection accuracy of traditional security detection method for networked manufacture system,security detection for networked manufacture system based on Least Square Support Vector Machine Optimized by Particle Swarm Optimization(PSO-LSSVM) is presented.Firstly,the security detection features for networked manufacture system are determined,and the features are preprocessed.Then,security detection model for networked manufacture system based on least square support vector machine optimized by particle swarm optimization is created.Finally,the cases are employed to testify the effectiveness and superiority of the proposed method.Artificial neural network,support vector machine are applied to compare with the proposed method.The experimental results indicate that detection ability of least square support vector machine optimized by particle swarm optimization is better than that of artificial neural network,support vector machine.
作者 张昱
出处 《现代制造工程》 CSCD 北大核心 2011年第4期95-98,共4页 Modern Manufacturing Engineering
关键词 网络化制造 安全检测 最小二乘支持向量机 识别技术 非线性建模 networked manufacture security detection least square support vector machine recognition technology nonlinear modeling
  • 相关文献

参考文献10

  • 1金成晓,俞婷婷.基于BP神经网络的我国制造业产业安全预警研究[J].北京工业大学学报(社会科学版),2010,10(1):8-16. 被引量:17
  • 2Fabrice Rossi, Nathalie Villa. Support vector machine for functional data classification [ J ]. Neurocomputing, 2006,69 (7 -9) :730 -742.
  • 3Amit David, Boaz Lerner. Support vector machine-based image classification for genetic syndrome diagnosis [ J ]. Pattern Recognition Letters,2005,26 ( 8 ) : 1029 - 1038.
  • 4Vikramjit Mitra, Wang Chia-Jiu, Satarupa Banerjee. Text classification: A least square support vector machine approach [J]. Applied Soft Computing, 2007,7 ( 3 ) :908 - 914.
  • 5Kemal Polat, Salih Gtines. Breast cancer diagnosis using least square support vector machine [ J ]. Digital Signal Process- ing.2007.17(4) :694-701.
  • 6何晨光,贺思德,董志民.最小二乘支持向量机在人脸识别中的应用[J].云南大学学报(自然科学版),2008,30(3):239-245. 被引量:8
  • 7Li Chun-Hua, Zhu Xin-Jian, Cao Guang-Yi, et al. Identification of the Hammerstein model of a PEMFC stack based on least squares support vector machines [ J ]. Journal of Power Sources, 2008,175 ( 1 ) :303 - 316.
  • 8雷烨,姜子运.基于最小二乘支持向量机的机车轴承故障诊断[J].电气传动自动化,2009,31(6):14-16. 被引量:6
  • 9陈俊风 范新南 苏丽媛.基于粒子群优化算法的PID控制浆叁教罄辛.计篮加仿真,:158-160.
  • 10孙亚.基于粒子群BP神经网络人脸识别算法[J].计算机仿真,2008,25(8):201-204. 被引量:32

二级参考文献40

共引文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部