期刊文献+

基于人体关键部位检测的敏感图像过滤方法 被引量:1

PORNOGRAPHIC IMAGE FILTERING METHOD BASED ON EROTOGENIC-ZONE DETECTION
下载PDF
导出
摘要 目前多数敏感图像过滤方法对皮肤裸露较多或类肤色区域较多的图像容易产生误检。为降低对这类图像的误检率,提出一种基于人体关键部位检测的敏感图像过滤方法。该方法提取肤色特征、表征局部对象外观和形状的HOG(Histograms of Orien-ted Gradient)特征、空间分布特征及描述区域灰度分布的Haar-like等特征,利用Adaboost学习算法,训练得到人体关键部位的分类器,通过此分类器实现敏感图像的过滤。实验表明,该方法能够准确地检测关键部位,可以有效地降低敏感图像的误检率。 At present,many non-pornographic images containing larger exposure of skin area or approximate skin-colour area are often prone to be detected as the pornographic images by most of the pornographic image filtering methods.In order to decrease the false detection rate,a new pornographic image filtering method based on erotogenic-zone detection is proposed in the paper.The method extracts main features,including skin-colour features,HOG features which describe the shape and appearance of local objects,spatial distribution based features and Haar-like features which describe local grayscale distribution,trains and obtains the classifier of erotogenic-zone recognition with Adaboost learning algorithm,and achieves the pornographic image filtering through the classifier.Results gained from the experiments confirmed that this method can precisely detect erotogenic-zone in an image,and can effectively reduce the fault detection rate against non-pornographic images.
出处 《计算机应用与软件》 CSCD 2011年第4期154-158,共5页 Computer Applications and Software
基金 浙江省科技厅重大专项项目(2010C11049)
关键词 敏感图像过滤 Adaboost学习算法 肤色特征 HOG特征 Pornographic image filtering Adaboost learning algorithm Skin-colour feature HOG Feature
  • 相关文献

参考文献6

  • 1江志伟.基于内容的WEB图像过滤技术研究[D].浙江:浙江大学,2004.
  • 2Fang Z Q, Wei z, Gao W. Shape-based adult images detection [ C ]// Proceedings of the Third International Conference on Image and Graphics. Oakland : IEEE Computer Press, 2004 : 150 - 153.
  • 3Shu L J,Ming K Y,Choo C P. The Adult Image Identification Based on Online Sampling [ C ]//International Joint Conference on Neural Networks. Vancouver, BC. 2006:2566 - 2571.
  • 4Viola F, Jones M. Rapid object detection using a boosted cascade of simple features [ C ]//Proc of IEEE Conference on Computer Vision and Pattern Recognition. Kauai, Hawaii,2001:511 - 518.
  • 5Dalai N, Bill T. Histograms of Oriented Gradients for Human Detection [ C]//Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego. 2005:886 -893.
  • 6Tomoki W, Satoshi I, Kentaro Y. Co-occurrence Histograms of Oriented Gradientsfor Pedestrian Detection[ C ]//Advances in Image and Video Technology Third Pacific Rim Symposium Berlin: SpringerVerlag, 2009:37 -45.

同被引文献12

引证文献1

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部