期刊文献+

户外环境下抗遮挡的运动目标跟踪方法 被引量:2

Anti-occlusion moving object tracking method in outdoor environment
下载PDF
导出
摘要 针对户外环境光线和气候条件多变以及目标间相互遮挡对目标检测和跟踪的影响,提出了一种基于改进的高斯混合模型方法来检测运动目标,并消除噪声和阴影;同时采用基于Kalman滤波器的预测模型和最大后验概率目标匹配相结合的方法来实现目标的连续跟踪。实验表明,该方法能实现目标的稳定跟踪,且能够处理目标相互遮挡的情况,计算复杂度较低,基本满足实时应用的需求。 In order to overcome the adverse effect,which caused by the inconstant light and climate and occlusion between objects,on object detecting and tracking,a method based on the improved mixture Gaussian model is proposed to detect the moving object,then shadow and noise is removed.While using the method of predict model based on Kalman filter combines with maximum posterior probability for object matching it realizes the moving objects tracking.The experimental results indicate that the method can construct a robust real-time object tracking system which can easily handle the occlusion.
作者 冯柯 陈临强
出处 《计算机工程与应用》 CSCD 北大核心 2011年第11期187-189,200,共4页 Computer Engineering and Applications
关键词 视频监控 运动目标跟踪 阴影消除 目标遮挡 KALMAN滤波 video surveillance motion tracking shadow removing occlusion kalman filter
  • 相关文献

参考文献10

  • 1Li Z,Tang Q L, Sang N.Improved mean shift algorithm for occlusion pedestrian traeking[J].Electronics Letters,2008(8) :622-623.
  • 2Razali M T.Detection and classification of moving object for smart vision Sensor[C]//Proceedings of 2nd Conference on In- formation and Communication Technologies,2006: 733-737.
  • 3KaewTraKulPong P, Bowden R.An improved adaptive back- ground mixture model for real-time tracking with shadow de- tection[C]//Proc 2nd European Workshop on Advanced Video Based Surveillance System,AVBS01,2001.
  • 4Zhang W, Wu Q M J.Multilevel fiamework to detect and handle vehicle occlusion[J].IEEE Transactions on ITS,2008(3) : 161-174.
  • 5Chiu C C, Wang C Y.Real time recognition and tracking system of multiple vehicles[C]//Intelligent Vehicles Symposium, 2006(6) :478-483.
  • 6Pan Jiyan.Robust and accurate object tracking under various types of ocelusions[J].IEEE Transactions on Circuits and Systems for Video Technology,2008(2):223-236.
  • 7Hsieh J W.Automatic traffic surveillance system for vehicle tracking and classification[J].IEEE Transactions on Intelligent Transportation Systems, 2006,7:175-187.
  • 8陈祖爵,陈潇君,何鸿.基于改进的混合高斯模型的运动目标检测[J].中国图象图形学报,2007,12(9):1585-1589. 被引量:37
  • 9吴成东,郭利锋,张云洲,刘濛.多车辆跟踪时目标粘连的解决方法[J].东北大学学报(自然科学版),2008,29(8):1065-1068. 被引量:5
  • 10冯祖仁,吕娜,李良福.基于最大后验概率的图像匹配相似性指标研究[J].自动化学报,2007,33(1):1-8. 被引量:22

二级参考文献31

  • 1郁梅,王圣男,蒋刚毅.复杂交通场景中的车辆检测与跟踪新方法[J].光电工程,2005,32(2):67-70. 被引量:23
  • 2蔡珣,孟祥旭,刘强.一种新的基于区域的高速公路多车辆跟踪方案[J].光电工程,2006,33(6):20-23. 被引量:5
  • 3Lee K W, Ryu S W, Lee S J, Park K T. Motion based object tracking with mobile camera. Electronics Letters, 1998, 34(3): 256-258
  • 4Kass M, Witkin A, Terzopoulos D. Snakes: Active contour models. International Journal of Computer Vision, 1988, 1(4): 321-331
  • 5Horn B K P, Schunk B G. Determining optical flow. Artificial Intelligence, 1981, 17(13): 185-203
  • 6Smith S M, Brady J M. ASSET-2: Real-time motion segmentation and shape tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1995, 17(8): 814-820
  • 7Huttenlocher D P, Klanderman G A, Rucklidge W J. Comparing images using the Hausdorff distance. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(9): 850-863
  • 8Ghafoor A, Iqbal Ft N, Khan S A. Modified chamfer matching algorithm. Lecture Notes in Computer Science, Springer, 2003, 2690: 1102-1106
  • 9Malki J, Mascarilla L, Zahzah E H, Boursier P. Directional relations composition by orientation histogram fusion. In:Proceedings of 15th International Conference on Pattern Recognition. Barcelona, Spain. IEEE, 2000. 3:758-761
  • 10Baker E S, DeGroat R D. A correlation-based subspace tracking algorithm. IEEE Transactions on Signal Processing, 1998, 46(11): 3112-3116

共引文献61

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部