期刊文献+

基于Pareto解集关联与预测的动态多目标进化算法 被引量:7

A dynamic multi-objective evolutionary algorithm based on Pareto set linkage and prediction
原文传递
导出
摘要 针对动态多目标优化问题,提出一种基于Pareto解集关联与预测的动态多目标进化算法(LP-DMOEA),设计了基于超块的Pareto解集关联方法.该方法能够动态维护若干描述Pareto解变化规律的时间序列,通过对新环境下的Pareto解集进行预测来生成初始种群.将LP-DMOEA应用于非劣分类遗传算法(NSGA2),并对3类标准测试函数进行了实验,所得结果表明该方法能够有效求解动态优化问题. In order to solve dynamic multi-objective optimization problem(DMOPs),a dynamic multi-objective evolutionary algorithm based on Pareto set linkage and prediction(LP-DMOEA) is proposed and a Pareto set linking method based on hyperbox is designed.In this scheme,several time sequences which present the trend of Pareto solutions can be dynamically maintained.Based on the prediction of these time sequences,the initial population is generated.The LP-DMOEA is applied to the NSGA2 algorithm to solve three benchmark problems.Computational results show the effectiveness of the LP-DMOEA to solve DMOPs.
出处 《控制与决策》 EI CSCD 北大核心 2011年第4期615-618,共4页 Control and Decision
基金 国家自然科学基金项目(60875071 60774064) 水下信息处理与控制国家级重点实验室基金项目(9140C230503090C23)
关键词 动态多目标优化问题 动态多目标进化算法 Pareto解集关联与预测 超块 dynamic multi-objective optimal problem dynamic multi-objective evolutionary algorithm Pareto set linkage and prediction hyperbox
  • 相关文献

参考文献10

  • 1Jin Y, Sendhoff B. Constructing dynamic test problems using the multi-objective optimization concept[C]. Proc of the 2004 Evolutionary Workshops. Berlin: Springer- Verlag, 2004: 525-536.
  • 2Farina M, Deb K, Amato E Dynamic multiobjective optimization problems: Test cases, approximations, and applications [J]. IEEE Trans on Evolutionary Computation, 2004, 8(5): 425-442.
  • 3Deb K, Udaya Bhaskara Rao N, Karthik S. Dynamic multi-objective optimization and decision-making using modified NSGA-II: A case study on hydro-thermal powerscheduling[R]. Kanpur: India KanGAL, Indian Institute Technology of Kanpur, 2006.
  • 4尚荣华,焦李成,公茂果,马文萍.免疫克隆算法求解动态多目标优化问题[J].软件学报,2007,18(11):2700-2711. 被引量:32
  • 5刘淳安,王宇平.基于新模型的动态多目标优化进化算法[J].计算机研究与发展,2008,45(4):603-611. 被引量:14
  • 6Zhou A, Jin Y, Zhang Q, et al. Prediction-based re- initialization for evolutionary dynamic multi-objective optimization[C]. Proc of the 4th Int Conf on Evolutionary Multi-criterion Optimization. Berlin: Springer-Verlag, 2007: 832-846.
  • 7Hatzakis I, Wallace D. Dynamic multi-objective optimization with evolutionary algorithms: A forward- looking approach[C]. Proc of the 8th Annual Conf on Genetic and Evolutionary Computation. New York: ACM, 2006: 1201-1208.
  • 8Hatzakis I, Wallace D. Topology of anticipatory populations for evolutionary dynamic multi-objective optimization[C], l lth AIAA/ISSMO Multidisciplinary Analysis and Optimization Conf. Portsmouth: AIAA, 2006.
  • 9Zhang Q, Zhou A, Jin Y. model-based multiobjective Algorithm[J]. IEEE Trans on 2008, 12(1): 41-63. RM-MEDA: A regularity estimation of distribution Evolutionary Computation,.
  • 10Deb K. A fast and elitist multiobjective genetic algorithm: NSGA-II[J]. IEEE Trans on Evolutionary Computation, 2002, 6(2): 182-197.

二级参考文献17

  • 1刘芳,杨海潮.参数可调的克隆多播路由算法[J].软件学报,2005,16(1):145-150. 被引量:16
  • 2窦全胜,周春光,徐中宇,潘冠宇.动态优化环境下的群核进化粒子群优化方法[J].计算机研究与发展,2006,43(1):89-95. 被引量:20
  • 3GONG Maoguo,DU Haifeng,JIAO Licheng.Optimal approximation of linear systems by artificial immune response[J].Science in China(Series F),2006,49(1):63-79. 被引量:21
  • 4徐雪松,彭春华.动态环境下的免疫优化[J].计算机工程与应用,2007,43(1):27-29. 被引量:2
  • 5D A Veldhuizen. Multiobjective evolutionary algorithms: Classifications, analysis, and new innovation: [ Ph. D. dissertation] [D]. Dayton, OH: Air Force Institute of Technology, Air University, 1999
  • 6T Back. Evolutionary Algorithms in Theory and Practice [ M]. London: Oxford University Press, 1996
  • 7Y Jin, J Branke. Evolutionary optimization in uncertain environments-A survey [J]. IEEE Trans on Evolutionary Computation, 2005, 9(3): 303-217
  • 8Nusawardhana, S H Zak. Simultaneous perturbation extremum seeking method for dynamic optimization problems [C]. In: Proc of the 2004 American Control Conference. Piscataway, NJ: IEEE Press, 2004. 2805-2810
  • 9T Blankwell, J Branke. Multi-swarm optimization in dynamic environments [C]. In: Proc of Applications of Evolutionary Computing, LNCS 3005. Berlin: Springer-Verlag, 2004. 489 -500
  • 10K E Parsopoulos, M Vrahatis. Unified particle swarm optimization in dynamic environments [C]. In: Proc of Evolutionary Workshops 2005, LNCS 3449, Berlin: Springer- Verlag, 2005. 590-599

共引文献39

同被引文献64

  • 1杨建军,刘扬,魏立新,战红.多源注水系统泵站优化调度的双重编码混合遗传算法[J].自动化学报,2006,32(1):154-160. 被引量:10
  • 2刘淳安,王宇平.动态多目标优化的进化算法及其收敛性分析[J].电子学报,2007,35(6):1118-1121. 被引量:22
  • 3Shengxiang Yang,Renato Tinós.A Hybrid Immigrants Scheme for Genetic Algorithms in Dynamic Environments[J].International Journal of Automation and computing,2007,4(3):243-254. 被引量:9
  • 4尚荣华,焦李成,公茂果,马文萍.免疫克隆算法求解动态多目标优化问题[J].软件学报,2007,18(11):2700-2711. 被引量:32
  • 5FARINA M, DEB KK, AMATO P. Dynamic muhiobjective optimization problems: test cases, approximations, and applications [ J ]. IEEE Trans Evolut Comput, 2004,8 (5) :425-442.
  • 6COELLO C A, VAN VELDHUIZEN D A, LAMONT G B. Evolutionary algorithms for solving multi-objective problems [ M ]. New York : Springer-Vertag, 2007.
  • 7NGUYEN T T, YANG S X, BRANKE J. Evolutionary dynamic optimization : A survey of the state of the art [ J ]. Swarm Evolut Comput, 2012(6) :1-24.
  • 8DEB K, RAO U V, KARTHIK S. Dynamic multi-objective optimization and decision-making using modified NSGA-Ⅱ-a case study on hydro-thermal power scheduling[ D]. in Evolutionary Multi-Criterion Optimization (EMO), Berlin: Springer, 2007.
  • 9GOH C K, TAN K C. A competitive-cooperative coevolutionary paradigm for dynamic multiobjective optimization [ J ]. IEEE Trans Evolut Comput, 2009,13 ( 1 ) : 103-127.
  • 10YAO X, LIU Y, LING. Evolutionary programming made faster[J]. IEEE Trans Evolut Comput, 1999,3(2) :82-102.

引证文献7

二级引证文献43

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部