期刊文献+

新型混沌粒子群算法在TSP中的应用 被引量:5

Use of new chaotic particle swarm algorithm in traveling salesman problem
下载PDF
导出
摘要 针对旅行商问题,提出一种结合混沌优化和粒子群算法的新型混沌离散粒子群方法(CIPSO)。新算法根据此类组合优化问题解的固有地形特征,利用混沌运动的遍历性、随机性等特点进行求解,其基本思想是在求解过程中对粒子进行混沌扰动避免陷入局部最优,并引入群体间粒子的交叉作用来提高寻优效率。通过与遗传算法、蚁群算法和模拟退火算法等比较以及不同TSP问题的仿真实验发现,该方法是一种能进行有效优化的新方法。 In this paper,a novel algorithm called CIPSO for short based on particle swarm optimization(PSO) algorithm and chaos optimization algorithm(COA) is presented to solve traveling salesman problem(TSP).Some new operators are proposed to overcome difficulties of implementing PSO and solve the discrete problem on the basis of the special fitness landscape of TSP.Embedded with chaos theory,the proposed algorithm can enhance particles' global searching ability so as to avoid too quick convergence to the local optimal solution,and the introduction of information intercourse can enhance the local searching ability.Compared with SA,GA,ACS,etc.,the new algorithm demonstrates validity and satisfactory effect on several benchmark test problems.
作者 李九永 王京
出处 《武汉科技大学学报》 CAS 2011年第2期131-136,共6页 Journal of Wuhan University of Science and Technology
关键词 粒子群算法 旅行商问题 混沌理论 信息交流策略 PSO TSP chaos theory information intercourse strategy
  • 相关文献

参考文献16

  • 1MichaelRG DavidSJ.NP-完全问题汇编.计算机工程与应用,1981,:3-10.
  • 2康立山 谢云 尤矢勇.模拟退火算法[M].北京:科学出版社,1994.150-151.
  • 3Eberhart R C, Kennedy J. Particle swarm optimization[C]// Proceedings of the IEEE International Conference on Neural Networks. IEEE Service Center: Piscataway, NJ, 1995:1 942-1 948.
  • 4Shi Y H, Eberhart R C. A modified particle swarm optimizer[C]// Anchorage. IEEE Int Conf on Evo- lutionary Computation, 1998: 69-73.
  • 5Shi X H, Liang Y C, Lee H P. Particle swarm optimization-based algorithms for TSP and generalized TSP[J]. Information Processing Letters, 2007, 103(5) : 169-176.
  • 6李爱国,覃征,鲍复民,贺升平.粒子群优化算法[J].计算机工程与应用,2002,38(21):1-3. 被引量:303
  • 7Clerc M. Discrete particle swarm optimization, illustrated by traveling salesman problem [C]///Onwubolu G C, Babu B V. New Optimization Techniques in Engieering. Berlin : Springer Verlag, 2004:10-20.
  • 8Wang K P, Huang L, Zhou C G. Particle swarm optimization for traveling salesman problem[C]// IEEE Service Center. Proceedings of the Second International Conference on Machine Learning and Cybernetics, Xi~an: IEEE Press, 2003:1 583-1 585.
  • 9高尚,韩斌,吴小俊,杨静宇.求解旅行商问题的混合粒子群优化算法[J].控制与决策,2004,19(11):1286-1289. 被引量:73
  • 10谭皓,王金岩,何亦征,沈春林.一种基于子群杂交机制的粒子群算法求解旅行商问题[J].系统工程,2005,23(4):83-87. 被引量:19

二级参考文献24

  • 1张丽平,俞欢军,陈德钊,胡上序.粒子群优化算法的分析与改进[J].信息与控制,2004,33(5):513-517. 被引量:85
  • 2李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 3宫会丽,丁香乾.GA和HS算法解决电子化配车方法比较[J].微计算机信息,2005,21(07X):147-148. 被引量:8
  • 4熊勇,路文初,莫愿斌,胡上序.基于旋转曲面变换的粒子群优化方法[J].浙江大学学报(工学版),2005,39(12):1946-1949. 被引量:3
  • 5Kennedy J,Eberhart R. Particle swarm optimization[R]. In : IEEE Int Confon Neural Networks, Perth, Australia.1995: 1942-1948.
  • 6Johnson D S,McGeoch L A. The traveling ,salesman problem:a case study in local optimization[A]. Aarts E H L,Lenstra J K. Local search in combinatorial optimization[C]. John Wiley & Sons, 1997:215-310.
  • 7.[EB/OL].http ://www. informatik, uni-heidelberg, de/groups/comopt/software/TSPLIB95/,.
  • 8Kennedy J, Eberhart R C. Particle swarm optimization[A]. Proc IEEE International Conference on Neural Networks, IV. Piscataway, NJ : IEEE Service Center, 1995 : 1942- 1948.
  • 9Bergh F. Analysis of particles swarm optimizers[Z]. South Africa: Department of Computer Science, University of Pretoria, 2002 : 81-83.
  • 10Dorigo M,Gambardella L M. Ant colony system:a cooperative learning approach to the traveling -lesman problem[J ]. IEEE Transactions on Evolutionary Computation, 1997,1 (1) : 53 - 66.

共引文献429

同被引文献56

引证文献5

二级引证文献52

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部