摘要
Sumoylation is an important protein modification discovered recently. SUMO(small ubiquitin-related modifier) pathway regulates the protein stability and transcriptional activity with a 12-kDa small molecular protein, SUMO, ligated to the target protein. The purification of SUMO proteins is a key step to reveal their function. The purpose of this study was to construct the recombinant SUMO1 gene cloned to a pGEX-4T-1 vector to express and purify the SUMO1-GST fusion protein in Escherichia coli. First, the full length DNA sequence of SUMO1 gene was amplified by PCR and was ligated to pMD18-T vector. Then the SUMO1 gene was subcloned to pGEX-4T-1 prokaryotic expression vector between BamHI and XhoI sites, and transformed in Escherichia coli DH5α cells. The right colonies were identified by restrictive enzyme digestion and sequencing. The correct rebombinant plasmid of pGEX-4T-1-SUMO1 was transformed in Escherichia coli BL21 cells and then induced by IPTG(isopropyl- β-D-1- thiogalacto-pyranoside) to express the SUMO1-GST fusion protein. The highly purified SUMO1-GST(glutathione S-transferase) fusion protein was obtained by affinity chromatography. Finally, the properties of SUMO1-GST fusion protein were confirmed by Coomassie brilliant blue strain and Western blot analysis. The recombinant plasmid of pGEX-4T-1-SUMO1 was successfully constructed, and SUMO1-GST fusion proteins were successfully expressed.
Sumoylation is an important protein modification discovered recently. SUMO(small ubiquitin-related modifier) pathway regulates the protein stability and transcriptional activity with a 12-kDa small molecular protein, SUMO, ligated to the target protein. The purification of SUMO proteins is a key step to reveal their function. The purpose of this study was to construct the recombinant SUMO1 gene cloned to a pGEX-4T-1 vector to express and purify the SUMO1-GST fusion protein in Escherichia coli. First, the full length DNA sequence of SUMO1 gene was amplified by PCR and was ligated to pMD18-T vector. Then the SUMO1 gene was subcloned to pGEX-4T-1 prokaryotic expression vector between BamHI and XhoI sites, and transformed in Escherichia coli DH5α cells. The right colonies were identified by restrictive enzyme digestion and sequencing. The correct rebombinant plasmid of pGEX-4T-1-SUMO1 was transformed in Escherichia coli BL21 cells and then induced by IPTG(isopropyl- β-D-1- thiogalacto-pyranoside) to express the SUMO1-GST fusion protein. The highly purified SUMO1-GST(glutathione S-transferase) fusion protein was obtained by affinity chromatography. Finally, the properties of SUMO1-GST fusion protein were confirmed by Coomassie brilliant blue strain and Western blot analysis. The recombinant plasmid of pGEX-4T-1-SUMO1 was successfully constructed, and SUMO1-GST fusion proteins were successfully expressed.