摘要
Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a π-orbital TB model incorporated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.
Armchair carbon nanocoils (CNCs) with different geometric parameters are constructed and optimized using a tight-binding (TB) total energy model. The quantum conductance of these nanocoils is simulated employing a γ-orbital TB model incorpo- rated with the non-equilibrium Green's function theory. Compared with the perfect armchair carbon nanotubes (CNTs) and armchair CNTs with only Stone-Wales (SW) defects, the quantum conductance spectra of the armchair CNCs present distinct gaps around the Fermi level, which are mainly originated from the existence of sp3 carbon in the three-dimensional spiral structures. Moreover, the detailed conductance spectra of the armchair CNCs depend sensitively on their geometric parameters, such as tubular diameter and block-block distance.
基金
supported by the Fundamental Research Funds for the Central Universities of China (Grant No. DUT10ZD211)
the National Natural Science Foundation of China (Grant Nos. 51072027 and 40874039)