期刊文献+

基于再生核Hilbert空间小波核函数支持向量机的高光谱遥感影像分类 被引量:27

Wavelet Support Vector Machines Based on Reproducing Kernel Hilbert Space for Hyperspectral Remote Sensing Image Classification
下载PDF
导出
摘要 针对支持向量机用于高光谱遥感影像分类存在的分类精度不高、参数选择困难等问题,提出一种再生核Hilbert空间的小波核。其可以逼近任意非线性函数,能够有效改进参数估计的效果,进而实现基于再生核Hilbert空间的小波核函数支持向量机(小波支持向量机)。并选取北京昌平地区的国产高光谱数据operational modular imaging spec-trometer II(OMIS II)和意大利Pavia大学ROSIS高光谱数据进行试验。结果表明,应用Coiflet小波核函数时能获得较高分类精度。 Some limitations exist in hyperspectral remote sensing image classification by SVM(support vector machine),such as unsatisfactory classification accuracy,difficult kernel parameter selection process and depen-dence on artificial tricks.In order to solve those problems,the wavelet SVM(WSVM) was proposed based on the investigation to SVM theory,reproducing kernel Hilbert space(RKHS) and the wavelet analysis.The wavelet kernel in RKHS can approximate arbitrary nonlinear functions and effectively handle the impacts of parameter selection.By experimenting the proposed algorithm with hyperspectral image captured by operational modular imaging spectrometer II(OMIS II) data from China and ROSIS data from Italy.The experimental results shown that Coiflet wavelet kernel function was the more effective wavelet in terms of classificiatoin accuracy improvement.
作者 谭琨 杜培军
出处 《测绘学报》 EI CSCD 北大核心 2011年第2期142-147,共6页 Acta Geodaetica et Cartographica Sinica
基金 国家自然科学基金(40401038) 国家863计划(2007AA12Z162) 高等学校博士学科点专项科研基金(20070290516) 江苏省普通高校研究生科研创新计划(CX08B_112Z) 中央高校基本科研业务费专项资金(2010QNA18)
关键词 高光谱遥感 小波支持向量机 再生核HILBERT空间 hyperspectral remote sensing wavelet support vector machine(WSVM) reproducing kernel Hilbert space
  • 相关文献

参考文献30

  • 1李慧,王云鹏,李岩,王兴芳.基于SVM和PWC的遥感影像混合像元分解[J].测绘学报,2009,38(4):318-323. 被引量:15
  • 2谭琨,杜培军.基于支持向量机的高光谱遥感图像分类[J].红外与毫米波学报,2008,27(2):123-128. 被引量:108
  • 3Thomas Nash,杨敏.春[J].海外英语,2008(4). 被引量:6
  • 4Theodoros Evgeniou,Massimiliano Pontil,Tomaso Poggio.Regularization Networks and Support Vector Machines[J]. Advances in Computational Mathematics . 2000 (1)
  • 5GARCIA M,CHUVIECO E,NIETO H,et al.CombiningAVHRR and Meteorological Data for Estimating Live FuelMoisture Content. Remote Sensing of Environment . 2008
  • 6SWAIN K C,JAYASURIYA H P,SALOKHE V M.Suitability of Low-altitude Remote Sensing Images forEstimating Nitrogen Treatment Variations in Rice Crop-ping for Precision Agriculture Adoption. Journal ofApplied Remote Sensing . 2007
  • 7DU P J,WANG X M,TAN K,et al.Impacts of Noise onthe Accuracy of Hyperspectral Image Classification by SVM. Proceedings of the 8th International Symposium onSpatial Accuracy Assessment in Natural Resources andEnvironmental Sciences . 2008
  • 8FOODY G M,MATHUR A,SANCHEZ-HERNANDEZC,et al.Training Set Size Requirements for the Classifi-cation of a Specific Class. Remote Sensing of Environ-ment . 2006
  • 9DU Z M,JIN X Q,YANG Y Y.Wavelet Neural Net-work-based Fault Diagnosis in Air-handling Units. HVAC R Research . 2008
  • 10CANU S,MARY X,RAKOTOMAMONJY A.Func-tional Learning through Kernels. Advances in Lear-ning Theory:Methods,Models and Applications . 2003

二级参考文献15

  • 1张钧萍,张晔.基于多特征多分辨率融合的高光谱图像分类[J].红外与毫米波学报,2004,23(5):345-348. 被引量:8
  • 2吴波,张良培,李平湘.基于支撑向量机概率输出的高光谱影像混合像元分解[J].武汉大学学报(信息科学版),2006,31(1):51-54. 被引量:15
  • 3张锦水,何春阳,潘耀忠,李京.基于SVM的多源信息复合的高空间分辨率遥感数据分类研究[J].遥感学报,2006,10(1):49-57. 被引量:131
  • 4Lothar Hermes, Dieter Frieau, Jan Puzicha, et al. Support Vector Machines for Land Usage Classification in Landsat TM Imagery[J] In: Proc. IGARSS 99,1:348-350.
  • 5Huang C, Davis L S. Townshend J R G. An assessment of support vector machines for land cover classification [J]. International Journal of Remote Sensing, 2002, 23 : 725-749.
  • 6Martin Brown, Hugh G Lewis, Steve R Gunn. Linear Spectral Mixture Models and Support Vector Machines for Remote Sensing[J]. IEEE Transactions on Geoscience and Remote Sensing ,2000,38(5) :2346-2360.
  • 7Zhang J, Zhang Y, Zhou T. Classification of hyperspectral data using support vector machine [ C ]. In: IEEE International Conference on Image Processing, 2001:882-885.
  • 8Vapnik V N. Statistical Learning Theory[M]. New York: Wiley. 1998.
  • 9Kre el U. Pairwise Classification and Support Vector Machines [M]. In Advances in Kernel Methods: Support Vector Learning, B. Scholkopf, C. J. C. Burges, and A. J. Smola ( eds. ) , The MIT Press, Cambridge, MA, 1999 : 255-268.
  • 10Hsu C W, Lin C J. A comparison of methods for multi-class support vector machines [J]. IEEE Transactions on Neural Networks ,2002,13 (2) :415-425, 2002.

共引文献126

同被引文献363

引证文献27

二级引证文献199

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部