期刊文献+

基于改进量子遗传算法的入侵检测特征选择 被引量:8

Intrusion Detection Feature Selection Based on Improved Quantum Genetic Algorithm
下载PDF
导出
摘要 针对入侵检测前必须分析输入数据的特征以及检测中数据维数较高的问题,根据入侵检测的特点,将特征选择问题作为优化问题来考虑,采用量子遗传算法对特征进行选择,充分利用其并行处理及全局搜索能力,提高数据分类质量、降低问题规模、消除冗余属性、加快数据处理速度;在KDD CUP1999数据集上进行实验,结果表明与遗传算法以及粒子群算法相比,该方法可以更有效地精简特征,提高分类质量。 Analysis the characteristics of the input intrusion detection data,and higher dimensions problem of intrusion detection.According to the characteristics of intrusion detection,feature selection will be considered as an optimization problem,using quantum genetic algorithm to feature selection,full use of the quantum genetic algorithm global search and parallel processing capabilities,to eliminate redundant attributes and reduce the scale of the problem and improve the data classification quality,faster data processing speed.Data sets in KDD CUP1999 Experimental results show that genetic algorithms and particle swarm algorithm,this method can more effectively streamline features,improve the quality of classification.
作者 刘晙 狄文辉
出处 《计算机测量与控制》 CSCD 北大核心 2011年第4期813-815,819,共4页 Computer Measurement &Control
基金 河南省基础与前沿技术研究计划基金项目(082300410390)
关键词 特征选择 入侵检测 量子遗传算法 网络安全 Feature selection intrusion detection quantum genetic algorithm network security
  • 相关文献

参考文献14

二级参考文献89

共引文献160

同被引文献45

  • 1张春飞,罗家融.软件去除零点漂移方法的讨论[J].计算机测量与控制,2004,12(7):684-686. 被引量:20
  • 2山艳,须文波,孙俊.量子粒子群优化算法在训练支持向量机中的应用[J].计算机应用,2006,26(11):2645-2647. 被引量:5
  • 3胡鹏,吴振兴.CIPS环境下的网络安全设计[J].铁路通信信号工程技术,2007,4(1):50-53. 被引量:1
  • 4洪小丽,彭彬.自感式电感传感器中零点误差的处理[J].中国仪器仪表,2007(1):76-78. 被引量:3
  • 5陈友,程学旗,李洋,戴磊.基于特征选择的轻量级入侵检测系统[J].软件学报,2007,18(7):1639-1651. 被引量:78
  • 6Steven Silverman er al. Miniature thermal emissiom spectrometer for the Mars Exploration Rover [ J ]. 2006 Avants, laser focus world, 2011, (3).
  • 7Woo - Yong Jang, Maheed M Hayat, Demonstration ofBias- Controlled Algorithmic Tuning of Quantum Dots in a Well (DWELL) MidIR Detectors[J].IEEE Journal of quantum elec- tronics, June 2009,45 (6).
  • 8Lee W, Stolfo S J, A Data Mining Framework for Building Intrusion Detection Model[C]//Proc. of 1999 IEEE Sym- posium on Security and Privacy. Oakland, USA: IEEE Computer Society Press, 1999: 120-132.
  • 9Forrest S, Perelson A S, Allen L, et al. Self-nonself Discrimination in a Computer[C]//Proc. of IEEE Sym- posium on Research in Security and Privacy. Oakland, USA: IEEE Computer Society Press, 1994: 202-212.
  • 10Shon T, Seo J, Moon J. SVM Approach with a Genetic Algorithm for Network Intrusion Detection[C]//Proc. of the 20th International Symposium on Computer and Information Sciences. Berlin, Germany: Springer-Verlag, 2005: 224-233.

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部