期刊文献+

SIMO信道中基于奇异值分解的盲信噪比估计算法 被引量:3

A Blind SNR Estimation Algorithm Based on SVD over SIMO Channels
下载PDF
导出
摘要 信噪比(SNR)是现代通信信号处理中一个重要参数,许多算法需要它作为先验信息以获取最佳估计性能。针对单输入多输出(SIMO)系统的信噪比估计问题,本文提出了一种盲信噪比估计算法。该算法利用多路信号协方差矩阵的奇异值分解(SVD),通过计算矩阵的最大特征值实现各路信号信噪比估计。该算法无需知道信号的先验信息,能够对加性高斯白噪声信道(AWGN)和多径信道下常用的数字调制信号进行信噪比估计。仿真结果表明该算法具有良好的估计性能。与单路信号中基于SVD信噪比估计算法相比,该算法无需估计信号空间与噪声空间维数,提高了估计精度,同时大大减小计算复杂度。 SNR(Signal-to-Noise Ratio) is an important parameter in modern communication signal processing,and many algorithms need this information to obtain optimal performance.A new blind SNR estimation algorithm is proposed for signal-to-noise ratio (SNR) estimation over single-input multiple-output(SIMO) system in this paper.The new SIMO SNR estimation technique is based on singular-value decomposition(SVD) of received signal covariance matrix,by computing the maximum eigenvalue of the matrix to estimate SNR.The algorithm can estimate the SNR of digital modulation signals commonly used in additional white Gaussian noise (AWGN) channels and multipath channels without prior information of the modulation type.The simulation results show that this algorithm offers excellent performance.Compared with the SVD-based method in single-input single-output(SISO) system,the proposed algorithm can enhance the estimating accuracy without computing the dimensions of signal and noise space,and achieve estimations with a small computational complexity.
出处 《信号处理》 CSCD 北大核心 2011年第4期552-557,共6页 Journal of Signal Processing
基金 国家级自然科学基金 基金编号:60872043
关键词 盲信噪比估计 单输入多输出 数字调制 特征值分解 最大特征值 blind SNR estimation single-input multiple-output(SIMO) digital modulation Singular-value decomposition(SVD) maximum eigenvalue
  • 相关文献

参考文献18

  • 1V. A. Vilnrotter, E. R. Rodemich, and S. J. Dolinar. Realtime combining of residual carrier Array signals using ML weight estimates [ J ]. IEEE Trans. on Communications, 1992, 40(3) : 604-615.
  • 2许华,樊龙飞,郑辉.一种精确的QPSK信号信噪比估计算法[J].通信学报,2004,25(2):55-60. 被引量:30
  • 3D. R. Pauluzzi and N. C. Beaulieu. A comparison of SNR estimation techniques for the AWGN channel [ J ]. IEEE Trans. on Communications, 2000, 48(10) : 1681-1691.
  • 4W. Gappmair, R. Lopez-Valcaree, and C. Mosquera. ML and EM algorithm for non-data-aided SNR estimation of linearly modulated signals[C]. 6th International Symposium on Communication Systems, Networks and Digital Signal Processing, CNSDSP'08. 2008:530-534.
  • 5R. M. Gagliardi, C. M. Thomas. PCM data reliability monitoringth rough estimation of signal-to-noise ratio [ J ]. IEEE Trans. on Communications, 1968, 16:479-486.
  • 6M. Avarez-Diaz, R. Lopez-Valcarce, and C. Mosquera. SNR estimation for multilevel constellations using higher-order moments[C]. IEEE Trans. on Signal Processing, 2010, 58(3) :1515-1526.
  • 7R. Lopez-Valcarce and C. Mosquera. Sixth-order statistics- based non-data-aided SNR estimation [ C ]. IEEE Commun. Lett., 2007, (4):351-353.
  • 8范海波,陈军,曹志刚.AWGN信道中非恒包络信号SNR估计算法[J].电子学报,2002,30(9):1369-1371. 被引量:53
  • 9隋丹,葛临东.一种新的基于改进PASTd的中频信号盲信噪比估计算法[J].电子与信息学报,2007,29(7):1657-1661. 被引量:20
  • 10彭耿,黄知涛,陆凤波,姜文利.中频通信信号信噪比的快速盲估计[J].电子与信息学报,2010,32(1):102-106. 被引量:17

二级参考文献43

共引文献130

同被引文献15

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部