期刊文献+

面向PCA异常检测器的毒害攻击和防御机制 被引量:6

Poison Attack and Defense Strategies on PCA-Based Anomaly Detector
下载PDF
导出
摘要 网络流量异常检测对于保证网络稳定高效运行极为重要.目前基于主成分分析(PCA)的全网络异常检测算法虽然发挥了关键作用,但它还存在着受毒害攻击而失效的问题.为此,深入分析了毒害攻击的机制并对其进行了分类,提出了量化毒害流量的两个测度,并给出了3种新的毒害攻击机制;提出了一种基于健壮PCA的异常检测算法RPCA以抵御毒害攻击.模拟试验结果表明,RPCA算法在受到多种毒害攻击时仍然具有很好的检测性能,明显优于PCA异常检测器,且运行时间能够满足实际网络异常检测的需求. Network traffic anomaly detection is crucial to guarantee stable and effective network operation.Nowadays,although PCA-based network-wide anomaly detector plays an important role,it cannot detect anomalous network traffic effectively in face of poison attacks.In order to solve poison attack problem aiming at PCA-based anomaly detector,poison attack strategies are investigated and classified,two metrics for quantifying poison traffic are proposed and three novel poison attack strategies are put forward.A robust PCA-based anomaly detection algorithm(for short RPCA) is proposed to resist poison attacks.Simulation experiment results show that RPCA algorithm can still perform very well in face of poison attacks,obviously superior to PCA-based anomaly detector,and its running time can satisfy the need of practical network anomaly detection.
作者 钱叶魁 陈鸣
出处 《电子学报》 EI CAS CSCD 北大核心 2011年第3期543-548,共6页 Acta Electronica Sinica
基金 国家自然科学基金(No.61070173) 国家863高技术研究发展计划(No.2007AA01Z418) 江苏省自然科学基金(No.BK2009058)
关键词 异常检测 毒害攻击 防御机制 主成分分析 健壮性 anomaly detection poison attacks defense strategy principal component analysis robustness
  • 相关文献

参考文献14

  • 1Lakhina A, CroveUa M, Diot C. Diagnosing network-wide traf-fic anomalies[ A ]. ACM SI6COMM [ C]. Portland, Oregon, USA,2004. 123 -134.
  • 2Rubinstein B I P, Nelson B, Huang L, et al. Compromising PCA-based Anomaly Detectors for Network-wide Traffic[R]. Technical Report UCB/EECS-2008-73,2009.
  • 3Ringberg H, Soule A, Rexford J, et al. Sensitivity of PCA for traffic anomaly detection[ A]. SIGMETRICS [ C]. San Diego, California, USA, 2007.212 -223.
  • 4Hubert M,Rousseeuw P J,Branden K V. ROBPCA:a new ap-proach to robust principal component analysis [ J ]. Technometfics,2005,47(3) :64-79.
  • 5Hubert M,Rousseeuw P J,Verboven. A fast robust method for.principal components with applications to chemomenics [ J]. Chemomelrics and Intelligent Laboratory Systems, 2002, 60 (3):101-111.
  • 6Rousseeuw P J, Van Driessen K. A fast algorithm for the mini-mum covariance determinant estimator [ J ]. Techrnometrics, 1999,41(5) :212 -223.
  • 7Maronna R. Principal components and orthogonal regression based on robust scales[ J]. Technometrics,2005,47(6) :264 -273.
  • 8Torte F D L, Black M J. Robust principal component analysis for computer vision[ A ]. ICCV [ C ]. Vancouver, 2001. 321 -330.
  • 9Debruyne M, Engelen S, Hubert M, et al. Robustness and outli-er detection in chemometrics[ J]. Critical Reviews in Analytical Chemistry, 2006,36(6) :245 -256.
  • 10Hubert M, Engelen S. Robust PCA and classification in bio-sciences[J]. Bioinformafics,2004,20(2) : 1728 -1736.

同被引文献103

  • 1LAKHINA A, CROVELLA M, DIOT C. Diagnosing network-wide traffic anomalies [C]// Proceedings of ACM SIGCOMM 2004: Conference on Computer Communications. New York, USA: ACM, 2004: 219-230.
  • 2LAKHINA A, CROVELLA M, DIOT C. Character- ization of network-wide anomalies in traffic flows [C] //Proceedings of the 2004 ACM SIGCOMM Internet Measurement Conference. New York, USA. ACM, 2004 : 201-206.
  • 3LAKHINA A, CROVELLA M, DIOT C. Mining anomalies using traffic feature distributions [J]. Computer Communication Review, 2005, 35(4) : 217-228.
  • 4RUBINSTEIN B, NELSON B, HUANG L, et al. Compromising PCA-based anomaly detectors for network-wide traffic, UCB/EECS-2008-73 [R]. Berkeley, USA: UCB, 2009.
  • 5CHATZIGIANNAKIS V, PAPAVASSILIOU S, ANDROULIDAKIS G. Improving network anomaly detection effectiveness via an integrated multi-metric-multi-link (Ma L) PCA-based approach[J]. Security and Communication Networks, 2009, 2(3): 289-304.
  • 6BRAUCKHOFFD, SALAMATIAN K, MAY M. Applying PCA for traffic anomaly detection: problems and solutions [C]// Proceedings of IEEE INFOCOM 2009. Piscataway, NJ, USA: IEEE, 2009: 2866- 2870.
  • 7ZAIDI Z, HAKAMI S, MOORS T, et al. Detection and identification of anomalies in wireless mesh networks using principal component analysis [J]. Journal of Interconnection Networks, 2009, 10(4): 517-534.
  • 8ZAIDI Z R, HAKAMI S, LANDFELDT B, et al. Real-time detection of traffic anomalies in wireless mesh networks[J]. Wireless Networks, 2010,16(6) : 1675-1689.
  • 9BISHOP M, TIPPING E. Probabilistic principal component analysis [J].Journal of the Royal Statistical Society, 1999,61(3) : 611-622.
  • 10VACLAVA, ANTHONY Q. The variational Bayes method in signal processing[M]. Berlin, Germany: Springer, 2006 : 57-88.

引证文献6

二级引证文献63

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部