期刊文献+

渐进非负曲率流形的Poisson方程解的估计

A sharp estimate on the solution of Poisson equation of asymptotically nonnegative curvature
下载PDF
导出
摘要 M为完备非紧的Khler流形有非负的全纯双截曲率和极大体积增长且数量曲率二次退化的条件下,可以通过研究Poisson方程来解Poincaré-Lelong方程,并应用Poincaré-Lelong方程研究和分析流形M的几何性质,文章主要研究了完备非紧非抛物的有渐近非负曲率n维Khler流形M的Poisson方程的解的估计,得到几个解的估计表达式。 As M is a complete noncompact Khler manifold with nonnegative holomorphic bisectional curvature and has maximal volume growth,and scalar curvature decays twice,the Poincaré-Lelong equations can be solved by the solution of Poisson equation and the result can be applied to studying the geometric properties of M manifold.In this paper,the sharp estimates on the solutions of Poisson equation of complete noncompact nonparabolic n-dimensional Khler manifold with asymptotically nonnegative curvature are researched,and some expressions of the sharp estimates are obtained.
作者 赵成兵
出处 《合肥工业大学学报(自然科学版)》 CAS CSCD 北大核心 2011年第4期631-633,共3页 Journal of Hefei University of Technology:Natural Science
基金 安徽省高等学校自然科学基金重点资助项目(KJ2011A061) 安徽省自然科学基金资助项目(11040606M01) 安徽建筑工业学院博士基金资助项目(2007-6-3)
关键词 渐近非负曲率流形 POISSON方程 解的估计 asymptotically nonnegative curvature Poisson equation estimate on solution
  • 相关文献

参考文献3

二级参考文献15

  • 1ZHOUCHAOHUI CHENZHIHUA.HARMONIC FUNCTIONS ON A COMPLETE NONCOMPACT MANIFOLD WITH ASYMPTOTICALLY NONNEGATIVE CURVATURE[J].Chinese Annals of Mathematics,Series B,2004,25(4):523-532. 被引量:5
  • 2[1]Colding, T. H. & Minicozzi Ⅱ, W. P., Harmonic function on manifolds, Ann. Math., 146(1997), 725-747.
  • 3[2]Yau, S. T., Some function theoretic properties of complete Riemannian manifolds and their applications to geometry, Indiana Univ. J., 25(1976), 659-670.
  • 4[3]Gromov, M., Curvature, diameter and Betti numbers, Comment. Math. Hel., 56(1981), 179-195.
  • 5[4]Buser, P., A note on the isoperimetric constant, Ann. Scient. Ec. Norm. Sup., 15(1982), 213-230.
  • 6NI Lei,SHI Yuguan,TAM Luenfai.Poisson equation,PoincaréLelong equation and decay on complete K(a)hler manifold[J].Differential Geometry,2001,57:339.
  • 7CHENG S Y,YAU S T.Differential equation on Rimannian manifold and their geometric application[J].Comm Pure Apply Math,1975,28:333.
  • 8Hamilton R S. Formation of singularities in the ricci flow [J]. Surveys in Diff Geom, 1995,2 : 7 - 136.
  • 9ChenBinglong, Zhu Xiping. On complete noncompact Kahler manifolds with positive bisectional curvature[J]. Math Ann, 2003,327 : 1-23.
  • 10Shi W X. Complete noncompact Kahler manifolds with positive holomorphic bisectional curvature [J].Bull Amer Math, 1990,23 : 437-440.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部