期刊文献+

基于水平分量优先原则的RDW-LBP人脸识别算法 被引量:4

Face recognition algorithm using RDW-LBP based on horizontal component prior principle
下载PDF
导出
摘要 首先分析了人脸图像不同的方向性细节对识别率的影响,提出了水平分量优先原则。结合该原则提出了一种基于多尺度区域性-方向性加权的规范型二元局部纹理描述算子RDW-LBP的鲁棒人脸识别算法。算法通过多尺度Haar小波分解,提取多级尺度分量和含有最多有效识别细节的一级水平细节分量,组成待分析系数子图矩阵M。计算矩阵M的RDW-LBP纹理特征图谱,结合子区域剖分,连接子区域特征共同组成人脸图像特征向量,最后使用基于Chi-Square距离的分类器进行识别。 In order to improve the recognition rate and robustness of face recognition algorithms, the impact of different directional details of facial images on recognition rate is analyzed, and a Horizontal component prior principle (HCPP) is proposed. Then a robust face recognition algorithm based on Regional directional weighted local binary pattern (RDW-LBP) is proposed, in which HCPP is employed. The face image is decomposed by multi-scale Haar wavelet to extract multi-level scale coefficients and the first level horizontal detail coefficients, which contain the most effective details are used for recognition. These coefficients are regarded as the elements of matrix M to be analyzed. Then matrix M is divided into several regions, from which the RDW-LBP feature distributions are extracted and concatenated into an enhanced feature vector for use as a facial descriptor. Finally, the classifier based on Chi-Square distance is used for recognition. The correctness and validity of HCPP are verified by test results. Compared with LBP descriptor proposed by Ojala, RDW-LBP descriptor improves the recognition rate efficiently without increasing computational complexity.
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2011年第3期750-757,共8页 Journal of Jilin University:Engineering and Technology Edition
基金 '863'国家高技术研究发展计划项目(2008AA10Z224) 国家自然科学基金项目(60873147 41001302)
关键词 计算机应用 人脸识别 区域性-方向性加权的二元局部纹理 多尺度小波分解 直方图特征 computer application face recognition RDW-LBP multi-scale wavelet decomposition histogram features
  • 相关文献

参考文献19

  • 1Jafri R, Arabnia H R. A survey of face recognition techniques[J]. Journal of Information Processing Systems,2009,5(2) :41-68.
  • 2Ojala T, Pietikainen M, Harwood D. A comparative study of texture measures with classification based on feature distributions [J]. Pattern Recognition, 1996,29(1) :51-59.
  • 3Ojala T, Pietikainen M, Maenpaa M. Multiresolution gray-scale and rotation invariant texture classifica- tion width local binary patterns[J]. IEEE Transae tions on Pattern Analysis and Machine Intelligence, 2002,24(7) :971-987.
  • 4Timo A, Ahonen T, Hadid A, Pietikainen M. Face recognition with local binary patterns[C]//In: Proc of the European Conf on Computer Vision ( ECCV2004), 2004 : 469-481.
  • 5Timo Ahonen, Hadid A, Pietikainen M. Face de- scription with local hinary patterns: application to face recognition [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28 (12) : 2037 -2041.
  • 6Liao Sheng-cai, Zhu Xiang xin, Lei Zhen, et al. Learning multi scale block local binary patterns for face recognition [C] // Proceedings of IAPR/IEEE International Conference on Biometrics (ICB2007), Seoul, Korea, 2007 : 828-837.
  • 7张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 8Tan Xiao-yang, Triggs Bill. Enhanced local texture feature sets for face recognition under difficult light- ing conditions[C]//IEEE International Workshop on Analysis and Modeling of Faces and Gestures ( AMFG2007 ), Heidelberg, Berlin, 2007 : 168- 182.
  • 9Tan Xiao yang, Triggs Bill. Enhanced local texture feature sets for face recognition under difficult light- ing conditions[J]. IEEE Transactions on Image Pro- cessing,2010,19(6) :1635- 1650.
  • 10王玮,黄非非,李见为,冯海亮.使用多尺度LBP特征描述与识别人脸[J].光学精密工程,2008,16(4):696-705. 被引量:52

二级参考文献40

  • 1李粉兰,徐可欣.一种应用于人脸正面图像的眼睛自动定位算法[J].光学精密工程,2006,14(2):320-326. 被引量:20
  • 2张文超,山世光,张洪明,陈杰,陈熙霖,高文.基于局部Gabor变化直方图序列的人脸描述与识别[J].软件学报,2006,17(12):2508-2517. 被引量:82
  • 3Phillips PJ,Grother P,Micheals RJ,Blackburn DM,Tabassi E,Bone JM.Face recognition vendor test 2002 results.Evaluation Report,2003.
  • 4Phillips PJ,Syed HM,Rizvi A,Rauss PJ.The FERET evaluation methodology for face-recognition algorithms.IEEE Trans.on Pattern Analysis and Machine Intelligence,2000,22(10):1090-1104.
  • 5Brunelli R,Poggio T.Face recognition:features vs.templates.IEEE Trans.on Pattern Analysis and Machine Intelligence,1993,15(10):1042-1053.
  • 6Turk M,Pentland A.Face recognition using eigenfaces.In:Negahdaripour S,et al.,eds.Proc.of the IEEE Conf.on Computer Vision and Pattern Recognition.Maui:IEEE Computer Society Press,1991.586-591.
  • 7Belhumer P,Hespanha P,Kriegman D.Eigenfaecs vs fisherfaces:Recognition using class specific linear projection.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):711-720.
  • 8Porat M,Zeevi Y.The generalized Gabor scheme of image representation in biological and machine vision.IEEE Trans.on Pattern Analysis and Machine Intelligence,1988,10(4):452-468.
  • 9Wiskott L,Fellous JM,Kruger N,Malsburg C.Face recognition by elastic bunch graph matching.IEEE Trans.on Pattern Analysis and Machine Intelligence,1997,19(7):775-779.
  • 10Liu CJ,Wechsler H.Gabor feature based classification using the enhanced fisher linear discriminant model for face recognition.IEEE Trans.on Image Processing,2002,11(4):467-476.

共引文献126

同被引文献44

  • 1易荣庆,李文辉,王铎.基于自组织神经网络的特征识别[J].吉林大学学报(工学版),2009,39(1):148-153. 被引量:6
  • 2王丹,张祥合.基于HOG和SVM的人体行为仿生识别方法[J].吉林大学学报(工学版),2013,43(S1):489-492. 被引量:9
  • 3Viola P, Robust J M J. Real time face detection[J]. International Journal of Computer Vision, 2004, 60 (2) : 137-154.
  • 4Rowley H A. Neural network-based human face deteetion[D]. Pittsburgh: Camegie Mellon University, 1999.
  • 5Li Stan Z, Zhang Zhen-qiu. FloatBoost Learning and Statistical Face Detection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004,26 (9): 1112-1123.
  • 6Jones M, Viola P. Fast multi-view face detection [R]. Technical Report TR2003-96, Mitsubishi Electric Research Lahortories, 2003.
  • 7David G L. Distinctive image feature from scale-invariant interest points[J]. International Journal of Computer Vision, 2004, 60(2):91-110.
  • 8Brown M, Lowe D G. Invariant features from interest point groups [C]//Proceddings of British Machine Vision Conference, 2002: 656-665.
  • 9Nevatia R, Babu K R. Linear feature extraction and description[C]//Proceedings of Computer Vision, Graphics and Image Processing, 1980.
  • 10Ke Y, Sukthankar R. PCA-SIFT: a more distinctive representation for local image descriptors[C]//Computer Vision and Pattern Recognition, 2004: 506- 513.

引证文献4

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部