期刊文献+

采用改进粒子滤波的雷达扩展目标检测前跟踪 被引量:15

Extended radar target tracking before detection using the modified particle filter
下载PDF
导出
摘要 在雷达回波的距离——多普勒数据上,建立了粒子滤波所需的系统动态模型和观测模型,将传统的点目标模型改进为更接近于实际的线形扩展目标模型,并推导出了新模型的似然比函数.同时,为了减少粒子数,对传统的粒子滤波(PF)算法进行了改进.由于模型的匹配和检测前跟踪(TBD)算法在时间上的积累功能,所提算法提高了雷达对低信噪比目标的检测概率.仿真结果表明,该算法能稳定地检测到信噪比为1 dB的目标. The system dynamic model and measurement model in the particle filter(PF) are established in a sequence of radar range-Doppler measurements and a linear extended target model is proposed,which is more suitable for describing a maneuvering target than the conventional point target model.Furthermore,the likelihood ratio function of the new model is also derived.In addition,the conventional PF is improved here to reduce the number of particles.Due to the macthing between the proposed target model and the integration function of TBD algorithm over time,an improved probability of detection for the dim target is obtained.Simulation results demonstrate that the proposed method is capable of detecting and tracking a target with the SNR of 1dB stably.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第2期99-104,共6页 Journal of Xidian University
基金 国家自然科学基金资助项目(60901065)
关键词 检测前跟踪 粒子滤波 扩展目标 似然比函数 track-before-detect particle filter extended target likelihood ratio function
  • 相关文献

参考文献13

  • 1Wu Z, He X, Su T. Coherent Integration Detection of Muhiple High Speed Targets with Range Migration and Doppler Spread [ C]//IET International Radar Conference 2009. Guilin: BIT, 2009: 188.
  • 2Davey S J, Rutten M G, Cheung B. A Comparison of Detection Performance for Several Track-before-detect Algorithms[ J]. EURASIP Journal on Advances in Signal Processing, 2008(2008) : 1-10.
  • 3Salmond D J, Birch H. A Particle Filter for Track-before-detect[ C] //Proceedings of the American Control Conference. New York: IEEE, 2001: 3755-3760.
  • 4Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications[ M]. London: Artech House, 2004: 251-293.
  • 5Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian Tracking[ J]. IEEE Trans on Signal Processing, 2002, 50(2) : 174-188.
  • 6Rutten M G, Gordon N J, Maskell S. Efficient Particle-Based Track-Before-Detect in Rayleigh Noise[ C]/'/Proceedings of the 7th International Conference on Information Fusion. Stockholm: FUSION, 2004: 693-700.
  • 7Rutten M G, Gordon N J, Maskell S. Recursive Track-before-detect with Target Amplitude Fluctuations[ J]. IEE Proc Radar Sonar Navig, 2005, 152(5): 345-352.
  • 8Boers Y, Driessen H, Torstensson J, et al. Track-before-detect Algorithm for Tracking Extended Targets[ J]. IEE Proc Radar Sonar Navig, 2006: 153(4) : 345-351.
  • 9Su H T, Wu T P, Liu H W, et al. Rao-Blackwellised Particle Filter Based Track Before-detect Algorithm[ J]. IET Signal Process, 2008, 2(2) : 169-176.
  • 10孙伟,郭宝龙.一种伪粒子滤波的多目标跟踪方法[J].西安电子科技大学学报,2008,35(2):248-253. 被引量:8

二级参考文献19

  • 1孟繁杰,郭宝龙.一种基于兴趣点颜色及空间分布的图像检索方法[J].西安电子科技大学学报,2005,32(2):256-259. 被引量:25
  • 2Du Qian, Kopriva I. Automated Target Detection and Discrimination Using Constrained Kurtosis Maximization[J]. IEEE Geoscience and Remote Sensing Letters, 2008, 5(1): 38-42.
  • 3Maskell S, Weekes K, Briers M. Distributed Tracking of Stealthy Targets Using Particle Filters[C]//The IEE Seminar on Target Tracking: Algorithms and Applications (Ref No 2006/11359), Publication Date. Birmingham.. IEE, 2006: 13- 20.
  • 4Arulampalam S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for On'line Nonlinear Non-Gaussian Bayesian Tracking[J]. IEEE Trans on Signal Processing, 2002, 50(2): 174-188.
  • 5van der Merwe R, Doucet A, de Freitas N, et al. The Unscented Particle Filter[DB/OL]. [2007-12-20]. http://cslu. cse. ogi. edu/publications/ps/merwe00, ps. gz.
  • 6Park S, Hwang J, Rou K, et al. A New Particle Filter Inspired by Biological Evolution: Genetic Filter[J]. International Journal of Applied Science Engineering and Technology, 2007, 4(1) : 459-463.
  • 7Cevher V, McClellan J H. Fast Initialization of Particle Filters Using a Modified Metropolis-Hastings Algorithm: Mode- Hungry Approach: Vol 2 [C]//International Conference on Acoustics, Speech and Signal Processing (ICASSP'04). Montreal: ICASSP, 2004: 129-132.
  • 8Yilmaz A, Javed O, Shah M. Object Tracking: a Survey[J]. ACM Computing Surveys, 2006, 38(4): 1-45.
  • 9Rui Yong, Chen Yunqiang. Better Proposal Distributions : Object Tracking Using Unscented Particle Filter [C].Proc of IEEECVPR. San Diego: IEEE Computer Society Press, 2001: 786-793.
  • 10Yang Changjiang, Duraiswami R, Davis R. Fast Multiple Object Tracking via A Hierarchical Particle Filter[C].Tenth IEEE International Conference on Computer Vision. Washington: IEEE Computer Society, 2005: 212-219.

共引文献26

同被引文献169

引证文献15

二级引证文献69

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部