期刊文献+

基于PSO的矿山企业动态配矿优化研究 被引量:7

Research on Dynamic Mine Ore Blending Optimization Based on Particle Swarm Optimization in Mining Enterprises
下载PDF
导出
摘要 采用粒子群优化(PSO)算法求解矿山企业动态配矿问题。依据开采条件圈定出可开采的矿块,用粒子的一位代表矿块,并用0或者1代表选择该矿块来开采,重新定义在约束条件下PSO粒子的运算与"飞行"规则,实现动态配矿优化的粒子群算法。该PSO算法实施简单,优化效果明显,通过2009年实际生产情况与优化结果的对比表明,该算法在生产成本几乎不变的情况下,明显提高了企业效率。 Particle Swarm Optimization(PSO) algorithm is proposed to solve the problem of mining enterprises dynamic allocation.The mineable ore blocks can be marked according to mining conditions delineated,with a bit of ore particles to represent a mine block,and the selected ore mining block is represented by 1,and the constrained PSO particles computing and "flight" rule is re-defined and the dynamic allocation ore particle swarm algorithm is realized.The PSO algorithm implementation is simple,the optimum effect is obvious,the comparison of actual production in 2009 and the optimization results shows that the algorithm improves enterprise efficiency significantly when the cost of production is almost unchanged.
出处 《计算机工程》 CAS CSCD 北大核心 2011年第8期175-177,180,共4页 Computer Engineering
关键词 配矿优化 粒子群优化算法 多目标优化 mine ore blending optimization; Particle Swarm Optimization(PSO) algorithm; multi-objective optimization;
  • 相关文献

参考文献6

二级参考文献36

  • 1顾雪祥,刘建明,Oskar Schulz,Franz Vavtar,郑明华.湖南沃溪钨锑金建造矿床同生成因的微量元素和硫同位素证据[J].地质科学,2004,39(3):424-439. 被引量:29
  • 2彭建堂,胡瑞忠,赵军红,符亚洲,袁顺达.湘西沃溪金锑钨矿床中白钨矿的稀土元素地球化学[J].地球化学,2005,34(2):115-122. 被引量:49
  • 3彭渤,Robert FREI,涂湘林.湘西沃溪W-Sb-Au矿床白钨矿Nd-Sr-Pb同位素对成矿流体的示踪[J].地质学报,2006,80(4):561-570. 被引量:42
  • 4胡清淮.黄砂坪铅锌矿生产计划问题的数学模型[J].长沙矿山研究院,季刊,1983,3(3).
  • 5Kennedy J, Eberhart R. Particle Swarm Optimization[C]//Proc. of ICNN'95. Perth, Australia: [s. n.], 1995.
  • 6Shi Y, Eberhart R. A Modified Particle Swarm Optimizer[C]// Proceedings of the IEEE Conference on Evolutionary Computation. Singapore: [s. n.], 1998.
  • 7Shi Y, Eberhart R. Fuzzy Adaptive Particle Swarm Optimization[C]//Proc, of Congress on Evolutionary Computation. Seoul, Korea: [s. n.], 2001.
  • 8Qin Zheng, Yu Fan, Shi Zhewen, et al. Adaptive Inertia Weight Particle Swarm Optimization[C]//Proc. of ICAISC'06. Kunming, China: [s. n.], 2006.
  • 9Chatterjee A, Siarry P. Nonlinear Inertia Weight Variation for Dynamic Adaptation in Particle Swarm Optimization[J]. Computers & Operations Research, 2006, 33(3): 859-871.
  • 10Riget J, Vesterstr J S. A Diversity-guided Particle Swarm Optimizer the ARPSO[EB/OL]. [2008-12-23]. http://www.evalife.dk.

共引文献78

同被引文献64

引证文献7

二级引证文献77

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部