期刊文献+

基于图像稀疏表示的红外小目标检测算法 被引量:43

Infrared small target detection based on image sparse representation
下载PDF
导出
摘要 基于超完备字典的图像稀疏表示是一种新的图像表示理论,利用超完备字典的冗余性可以有效地捕捉图像的各种结构特征,从而实现图像的有效表示.针对红外小目标检测问题,提出了一种基于图像稀疏表示的检测方法,该方法采用二维高斯模型生成样本图像,继而构造超完备目标字典,然后依次提取测试图像的图像子块并计算其在超完备字典中的表示系数,背景和目标的表示系数有着显著的差异,最后通过一个量化指标来判别该子图像块是否含有小目标,实验结果证实了所提方法的有效性. The sparse representation based on over-complete dictionary is a new image representation theory.The redundancy of over-complete dictionary can enable it effectively to capture the geometrical characteristics of the images.In this paper,a novel detection method based on image sparse representation was introduced.The over-complete target dictionary is first constructed with atoms which are produced by two-dimensional Gaussian model.Then the sub-image blocks of the test image are extracted successively and the corresponding coefficients are calculated with the constructed over-complete target dictionary.There is a significant difference between the coefficients of objective and background.Whether the sub-image block contains small target or not can be determined by the index of sparse concentration.Experimental results demonstrated the effectiveness of the proposed method.
出处 《红外与毫米波学报》 SCIE EI CAS CSCD 北大核心 2011年第2期156-161,166,共7页 Journal of Infrared and Millimeter Waves
基金 国家自然科学基金(60772097) 航空科学基金(2008ZC57)
关键词 图像稀疏表示 红外小目标 目标检测 image sparse representation infrared small target object detection
  • 相关文献

参考文献10

  • 1Deshpande S D, Er M H, Venkateswarlu R, et al. Maxmean and max-median filters for detection of small targets [J]. Proc. SPIE,1999 ,3809:74-83.
  • 2Li J C, Shen Z K, Lan T. Detection of spot target in infrared clutter with morphological filter [ J ]. IEEE Aerospace and Electronics, 1996,1 : 168-172.
  • 3Cao Y, Liu R M, Yang J. Small target detection using two- dimensional least mean sqnare (TDLMS) filter based on neighborhood analysis [ J ]. International Journal of Infrared and Millimeter Waves, 2008,29 ( 2 ) : 188-200.
  • 4Liu Z J, Chen C Y, Shen X B, et al. Detection of small objects in image data based on the nonlinear principal component analysis neural network [ J ]. Optical Engineering, 2005,44 ( 9 ) 093604 ( 1-9 ).
  • 5Cao Y, Liu R M, Yang J. Infrared Small Targets Detection Using PPCA [ J ]. International Journal of Infrared and Millimeter Waves, 2008,29 ( 4 ) : 385-395.
  • 6Plumbley M D, Abdallah S A, Blumensath T, et al. Musical audio analysis using sparse representations [ J ]. Proceedings in Computational Statistics ,2006,2 : 104-117.
  • 7Donoho D, Huo X. Uncertainty principles and ideal atomic decomposition [ J ]. IEEE Trans. on Information Theory, 2001,47 ( 7 ) :2845-2862.
  • 8Elad M, Aharon M. Image denoising via sparse and redundant representation over learned dictionaries [ J ]. IEEE Trans. on Image Processing,2006,15(12) :3736-3745.
  • 9Wright J, Yang A Y, Ganesh A, et al. Robust Face Recognition via Sparse Representation [ J ]. IEEE Trans. on Pattern Analysis and Machine Intelligence, 2009,31 ( 2 ) : 210- 227.
  • 10Candes E J, Tao T. Decoding by linear programming [ J ]. IEEE Trans. on Information Theory, 2005,51 ( 12 ) :4203-4215.

同被引文献317

引证文献43

二级引证文献235

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部