期刊文献+

样本数据预处理对基于BP神经网络的GPS高程拟合的影响 被引量:29

INFLUENCE OF SAMPLE DATA PREPROCESSING ON BP NEURAL NETWORK-BASED GPS ELEVATION FITTING
下载PDF
导出
摘要 分析在基于BP神经网络的GPS高程拟合建模中样本数据预处理的必要性,并列举了归一化、中心化、标准化3种数据预处理方法,然后结合实例,在神经网络建模中增加一个数据预处理层,分别用3种训练方法对基于不同数据预处理的模型进行训练建模,将计算结果进行对比分析,并与二次曲面模型结果进行比较,得出不同数据预处理方法对基于神经网络的GPS高程拟合建模精度的影响不同,且神经网络方法比二次曲面方法的拟合精度更高。 The necessity of sample data preprocessing for BP neutral network-based GPS elevation fitting is analyzed,and three preprocessing methods are given,which are normalization,centralization and standardization.In order to obtain an optimal model,a data preprocessing layer is added in the network topology and then the three different methods are applied in training the neutral networks.Through the comparative analysis of the results derived with different preprocessing methods and with quadratic surface model,it is found that the influence of three data preprocessing methods on BP neutral network-based GPS elevation fitting is different,and the accuracy with BP neutral network method is higher than that with quadratic surface model.
出处 《大地测量与地球动力学》 CSCD 北大核心 2011年第2期125-128,共4页 Journal of Geodesy and Geodynamics
基金 国家自然科学基金委员会与中国科学院天文联合基金(10878026)
关键词 GPS 高程拟合 BP神经网络 数据预处理 精度分析 GPS elevation fitting BP neural network data preprocessing precision analysis
  • 相关文献

参考文献7

二级参考文献30

共引文献222

同被引文献219

引证文献29

二级引证文献189

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部