期刊文献+

基于GA-CFS属性选择的个人信用评估模型 被引量:2

Personal Credit Evaluation Model Based on Attribution Selection of GA-CFS
下载PDF
导出
摘要 属性选择可以有效减少数据的冗余度和降低数据的维度,将GA-CFS属性选择方法引入个人信用评估中,利用CFS评价得到的启发式"价值"作为GA的适应度函数来对个人信用指标体系优化,建立了基于GA-CFS属性选择的个人信用评估模型。在Australian数据集上比较了ID3、NB、Logistic、SMO与GA-CFS属性选择方法和这四种分类算法分别结合执行的结果。实验结果表明,基于GA-CFS属性选择的个人信用评估模型降低了个人信用指标的维度,减少了学习所需的数据量,而且比基于单分类器的个人信用评估模型具有更高的分类准确率。 Attribution selection method could reduce data redundancy and the data dimension degree effectively and efficiently.This paper applies attribution selection of GA-CFS method to personal credit evaluation,and uses by the heuristic "merit" as GA fitness function to optimize personal credit index system through constructing a personal credit evaluation model based on attribution selection of GA-CFS.In addition,we compares with ID3,NB,Logistic,SMO and combination of GA-CFS attribute selection methods and the four classification algorithms in Australian data sets.Experiment results show that this model not only reduces the dimension of personal credit index and the amount of training data but also has higher classification accuracy than the personal credit evaluation model based on single classifier.
出处 《计算机系统应用》 2011年第5期210-213,161,共5页 Computer Systems & Applications
基金 国家自然科学基金(60873100) 山西省自然科学基金(2009011017-4)
关键词 个人信用评估 属性选择 遗传算法 CFS 10次10重交叉验证 personal credit evaluation attribution selection GA CFS 10 times 10-fold cross validation
  • 相关文献

参考文献11

二级参考文献44

  • 1唐晓静,杨桂元.组合预测系数的确定方法[J].财贸研究,1994,5(6):61-63. 被引量:5
  • 2Thomas L C. A survey of credit and behavioural scoring: forecasting financial risk of lending to consumers [J]. International Journal of Forecasting, 2000, 16: 149-172.
  • 3Odom M D, Sharda R. A neural network model for bankruptcy prediction[C]//IEEE International Joint Conference on Neural Networks. San Diego, CA, Morgan Kaufmann, 1990, 2:163-168.
  • 4Tam K, Kiang M. Managerial applications of the neural network: the case of bank failure predictions [J]. Management Science, 1992, 38: 416-430.
  • 5West D. Neural network credit scoring models[J]. Computers & Operations Research, 2000, 27: 1131- 1152.
  • 6Chi L C, Tang T C. Artificial neural networks in reorganization outcome and investment of distressed firms: The Taiwan Residents case[J]. Expert Systems with Applications, 2005, 29(3): 641-652.
  • 7Pendharkar P C. A threshold-varying artificial neural network approach for classification and its application to bankruptcy prediction problem[J]. Computers & Operations Research, 2005, 32(10:2561-2582.
  • 8Huang Y M, Hung C M, Jiau H C. Evaluation of neural networks and data mining methods on a credit assessment task for class imbalance problem[J]. Nonlinear Analysis: Real World Applications, 2006, 7(4) :720-747.
  • 9Abdou H, John P, Ahmed E M. Neural nets versus conventional techniques in credit scoring in Egyptian banking [J]. Expert Systems with Applications, 2008, 35(3): 1275-1292.
  • 10Eliana A, Giacomo T, Andrea R. A neural network approach for credit risk evaluation[J]. The Quarterly Review of Economics and Finance, 2008, 48 (4): 733-755.

共引文献91

同被引文献15

  • 1张艳阳,顾明.基于AdaBoost分类器的车牌字符识别算法研究[J].计算机应用研究,2006,23(5):242-243. 被引量:3
  • 2任江涛,黄焕宇,孙婧昊,印鉴.基于遗传算法及聚类的基因表达数据特征选择[J].计算机科学,2006,33(9):155-156. 被引量:4
  • 3WANG Jian-min, QIAN Cheng-lu, CHE Chun-hui, et al. Study on process of network traffic classification using machine leamingf C]// Proc of the 5th Annual ChinaGrid Conference. 2005 :262-266.
  • 4MOORE A W,ZUEV D,CROGAN M. Discriminators for use in flow-based classification [ M ]. London : Queen Mary University of London,2005.
  • 5MOORE A W, PAPAGIANNAKI K. Toward the accurate identification of network application [ C ] //Proc of Passive & Active Measurement Workshop 2005. Boston: Springer-Verlag,2005 :41-54.
  • 6FREUND Y,SCHAPIRE R E. A decision-theoretic generalization of on-line learning and an application to boosting[ J]. Journal Of Computer and System Sciences, 1997,55(1): 119-139.
  • 7FRIEDMAN J,HASTIE T, TIBSHIRANI R. Additive logistic regression :a statistical view of boosting[ J]. The Annals of Statistics, 2000,28(2) :337-407.
  • 8SCHAPIRE R E, SINGER Y. Improved boosting algorithms using confidence-rated predictions [ J] Machine Learning, 1999 ,37 ( 3 ): 297-336.
  • 9SHAN Shi-guang, YANG Peng, CHEN Xi-lin, et al. AdaBoost gabor fisher classifier for face recognition [ J ]. Computer Science,2005, 32(3) ; 279-292.
  • 10徐鹏,林森,刘琼.基于决策树的流量分类方法[J].计算机应用研究,2008,25(8):2484-2487. 被引量:6

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部