期刊文献+

混合Adaboost算法与Kalman滤波的头势人机交互

Kalman filter combined with Adaboost recognize head gesture for human-intelligent wheelchair interaction
下载PDF
导出
摘要 在基于头势的智能轮椅的人机交互中,头势识别是人机交互的重要研究内容。提出一种新的用于控制智能轮椅的头势识别方法,通过Kalman滤波器预测由Adaboost算法检测到的唇部窗口在下一帧图像可能出现的位置,进行下一帧图像的唇部检测,进而通过唇部窗口的位置与整个检测窗口中一个固定的矩形窗口进行比较确定头势。Kalman滤波器的使用克服了单纯使用Adaboost检测算法检测每一帧待检测窗口时将整个窗口的所有的位置都要搜索的问题,提高了唇部检测时间及检测精度,使智能轮椅在被头势控制过程中运动连续、正确。 Head gesture is an important intelligent human-wheelchair interaction approach,and the head gesture recognition is an important aspect of the interactions.A new head guests recognition to control the intelligent wheelchair presents in this paper,Kalman filter forecast the lips position detected by Adaboost algorithm may be appeared in the next frames first,and then detect the lips in the next frame.Compare the lips window position with a fixed rectangle to confirm the head gesture correspondingly.Kalman filter overcome detect all the possible lips position by just use the Adaboost algorithm in every frame,greatly improve the lips detection precision and reduce the detection time,solve the wheelchair's time delay during the head guests controlling.
出处 《重庆邮电大学学报(自然科学版)》 北大核心 2011年第2期237-241,共5页 Journal of Chongqing University of Posts and Telecommunications(Natural Science Edition)
基金 国际科技合作计划(2010DFA12160)~~
关键词 ADABOOST算法 智能轮椅 头势检测 Adaboost algorithm human-wheelchair head gesture detect
  • 相关文献

参考文献2

二级参考文献13

  • 1ZHANG Yi GU Jian YANG Da-cheng.Channel estimation in TDD mode[J].The Journal of China Universities of Posts and Telecommunications,2006,13(3):34-37. 被引量:4
  • 2李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 3[1]PEI Xiao,STROM E,CARRASCO R.Estimation of Time-Varying Multipath Rayleigh Fading Channels in Asynehronous DS-CDMA Systems:Personal,Indoor and Mobile Radio Communications,2004.PIMRC 2004.15th IEEE International Symposium on[C].[s.l.]:[S.n.],2004.
  • 4[2]ITU-R F.1487:Testing of HF modems with bandwidths of up to about 12KHz using ionospheric channel simulators[S].[S.l.]:ITU,2000.[3]ITU-R F.520(withdraw):Use of high frequency ionospheric channel simulators[s].[S.L]:ITU,1992.
  • 5[4]GODARD D.Channel Equalization Using a Kalman Filter for Fast Data Transmission[J].IBM J.Res.Devel.op.,1974,(5):267-273.
  • 6[5]VASEGHI S V.Advanced Digital Signal Processing and Noise Reduction[M].2ed.[S.l.]:JOHN WILEY&SONS,LTD,2000.
  • 7[9]ITU-R F.520(withdraw):Use of high frequency ionospheric channel simulators[S].[s.l.]:ITU,1992.
  • 8[10]ITU-R F.1487:Testing of HF modems with bandwidths of up to about 12KHz using ionospheric channel simulatots[S].[s.l.]:ITU,2000.
  • 9Viola P, Jones M. Rapid object detection using a boosted cascade of simple features[J]. IEEE CVPR, 2001, 1 (2): 511-518.
  • 10Schapire R E, Singer Y. Improved boosting algorithms using confidence-rated predictions [ J ]. Machine Learning, 37(3): 297-336.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部