期刊文献+

Frequency domain wave equation forward modeling using gaussian elimination with static pivoting 被引量:2

Frequency domain wave equation forward modeling using gaussian elimination with static pivoting
下载PDF
导出
摘要 Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source finite-difference modeling. The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point. We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational efficiency and saves and makes full use of memory. This method can lay the basis for waveform inversion. 频率域波动方程正演是求解一个大型线性稀疏方程组问题,其受到计算效率和内存存储问题的限制。常规的高斯消元法不能满足大型数据的并行计算,本文提出基于静主元消元法(GESP)进行稀疏矩阵LU分解和多炮有限差分正演,该方法不仅提高了稳定性,更有利于单频点内LU分解的分布式并行计算。通过Marmousi模型模拟试验,单频波场和转化到时间域地震剖面的试验表明模拟精度和计算效率得到提高,节约并充分利用内存,为波形反演奠定基础。
出处 《Applied Geophysics》 SCIE CSCD 2011年第1期60-68,95,共10页 应用地球物理(英文版)
基金 supported by China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2008ZX05004-006)
关键词 Gaussian elimination with static pivoting frequency-domain wave equation forward modeling single-frequency distributed parallel 正演模拟 波动方程 高斯 静电消除 旋转 Marmousi模型 分布式并行计算 计算效率
  • 相关文献

参考文献31

  • 1Berenger, J. P., 1994, A perfectly matched layer for absorption of electromagnetic waves: Journal of Computational Physics, 114, ! 85 - 200.
  • 2Bleibinhaus, F., Hole, J. A., Ryberg, T., and Fuis, G., 2007, Structure of the California coast ranges and San Andreas fault at SAFOD from seismic waveform inversion and reflection imaging: Journal of Geophysical Research, 112, B06315.
  • 3Dablain, M. A., 1986, The application of higher order for the differencing to the scalar wave equation: Geophysics, 51, 54 - 66.
  • 4Demmel, J. W., 1997, Applied numerical linear algebra: Society for Industrial and Applied Mathematics, USA.
  • 5Gao, F., Levander, A., Pratt, R. G., Zelt, C. A., and Fradelizio, G. L., 2007, Waveform tomography at a groundwater contamination site: Surface reflection data: Gennhv~ic~. 72_ G45 - G55.
  • 6Hustedt, B., Operto, S., and Virieux, J., 2004, Mixed- grid and staggered-grid finite difference methods for frequency-domain acoustic wave modeling: Geophysical Journal International, 157, 1269- 1296.
  • 7Jo, C. H., Shin, C., and Suh, J. H., 1996, An optimal 9-point, finite-difference, frequency-space, 2-D scalar wave extrapolator: Geophysics, 61,529 - 537.
  • 8Levander, A. R., 1988, Fourth-order finite difference P-SV seismograms: Geophysics, 53, 1425- 1436.
  • 9Li, X. S., and Demmel, J. W., 1998, Making sparse Gaussian elimination scalable by static pivoting: In Proceedings of SC98, High Performance Networking andComputing Conference, Orlando, USA.
  • 10Li, X. S., and Demmel, J. W., 2003, SuperLU DIST: A scalable distributed-memory sparse direct solver for unsymmetric linear systems: ACM Trans. Mathematical Software, 29(2L 110 - 140.

同被引文献5

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部