摘要
Frequency domain wave equation forward modeling is a problem of solving large scale linear sparse systems which is often subject to the limits of computational efficiency and memory storage. Conventional Gaussian elimination cannot resolve the parallel computation of huge data. Therefore, we use the Gaussian elimination with static pivoting (GESP) method for sparse matrix decomposition and multi-source finite-difference modeling. The GESP method does not only improve the computational efficiency but also benefit the distributed parallel computation of matrix decomposition within a single frequency point. We test the proposed method using the classic Marmousi model. Both the single-frequency wave field and time domain seismic section show that the proposed method improves the simulation accuracy and computational efficiency and saves and makes full use of memory. This method can lay the basis for waveform inversion.
频率域波动方程正演是求解一个大型线性稀疏方程组问题,其受到计算效率和内存存储问题的限制。常规的高斯消元法不能满足大型数据的并行计算,本文提出基于静主元消元法(GESP)进行稀疏矩阵LU分解和多炮有限差分正演,该方法不仅提高了稳定性,更有利于单频点内LU分解的分布式并行计算。通过Marmousi模型模拟试验,单频波场和转化到时间域地震剖面的试验表明模拟精度和计算效率得到提高,节约并充分利用内存,为波形反演奠定基础。
基金
supported by China State Key Science and Technology Project on Marine Carbonate Reservoir Characterization (No. 2008ZX05004-006)