期刊文献+

基于粘贴模型的测试优选

Test Selection Based on Sticker Model
下载PDF
导出
摘要 把测试优选问题映射为一个带约束的集合覆盖问题,运用DNA计算模式中的粘贴模型来求解测试优选问题.用存储复合体来表示子集,并利用粘贴运算的巨大并行性,来有效地获得满足测试目标的测试集.实验结果表明,此方法有效地减少了测试的数量,并且计算过程与测试集中列向量顺序无关,同时测试集中不含冗余测试. Test selection can be mapped to the weighted set cover problem.Computation based on sticking operations is introduced to sovle the test selection optimization.With the aid of sticker medel,the minirnal set eovering problem can be solved by transforming the subset to memory complex and utilizing the massive Parallelism of sticking oprations.Experiment results show that the method effectively reduces the number of the test and ensures that no redundant test left in the optimal test set is obtained.
出处 《武汉理工大学学报(交通科学与工程版)》 2011年第2期341-344,共4页 Journal of Wuhan University of Technology(Transportation Science & Engineering)
基金 湖北省自然科学基金项目资助(批准号:2007ABA262)
关键词 测试优选 粘贴模型 集合覆盖 test selection sticker model set-covering problem
  • 相关文献

参考文献11

二级参考文献39

  • 1林孔元,杨正瓴.模型故障诊断中测量点优选的一类期望熵法[J].天津大学学报,1994,27(4):398-402. 被引量:6
  • 2蔡金燕,陈国通,张宏伟.故障诊断中的测试节点优选方法[J].军械工程学院学报,2002,14(1):7-10. 被引量:17
  • 3冯永新,王巍,黄文虎.模型故障诊断中测量点优选技术研究[J].信息与控制,1996,25(5):301-305. 被引量:13
  • 4曾天祥.电子设备测试性及诊断技术[M].航空工业出版社,1996..
  • 5Colomi A, Dori$o M, Maniemo V. Distributed optimization by ant colonies[A]. Proc. 1st European Conf. On artificial life [C].Paris,France:Elsevier, 1991:134 - 142.
  • 6Hideo Fujiwara, Shunichi Toda. The complexity of fault detection problems for combinational logic circuits [ J ].IEEE Trans. Comput. June.1982,C-31(6).
  • 7http://reinforcementlearning, ai-depot, com/lntro. html[ Z/OL].
  • 8Gambardella M, Dorigo M.Ant-Q:A reinforcement learning approach to the traveling salesman problem [ A ]. Proc. of ML-95, Twelfth Intern.Conf. on Machine Learning[ C]. Morgan Kaufmann, 1995.252 - 260.
  • 9Reinelt G. TSPLIB-a traveling salesman problem libtmy[ J]. ORSAJ.On Computing, 1991,3(4) :376 - 385.
  • 10Mark Alien Weiss. Data Stmctmes and Algorithm Analysis (2nd Edition) [M]. Addison Wesley&Pearson, 1993.

共引文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部