期刊文献+

氧化锆小团簇的结构和稳定性(英文) 被引量:3

Structures and Stabilities of Small Zirconium Oxide Clusters
下载PDF
导出
摘要 利用密度泛函理论在广义梯度近似(GGA)和Perdew-Wang交换关联泛函条件下研究了小团簇ZrmOn(1≤m≤5,1≤n≤2m)的几何结构和稳定性.结果表明:所有团簇的最低能量结构可通过锆团簇的连续氧化获得,一般情况下O原子占据在Zr团簇的桥位.(ZrO2)3和(ZrO2)5团簇的基态结构符合配位数规则和成键规律.此外,讨论了氧化锆团簇的分解通道和分解能,值得指出的是在Zr原子数相同时ZrmO2m-1团簇(除了Zr4O7)存在最大的分解能. The geometric structures and stabilities of small ZrmOn (1≤m≤5, 1≤n≤2m) clusters were studied using density functional theory (DFT) calculations with the Perdew-Wang exchange correlation functional and the generalized gradient approximation (GGA). The lowest energy structures of all these clusters were obtained by the sequential oxidation of the small "core" zirconium clusters. In general, the O atoms prefer the bridge sites along the Zrm skeleton. The ground-state structures of the (ZrO2)3 and (ZrO2)5 clusters are consistent with coordination number rules and bonding regularity. The fragmentation channels and fragmentation energies of the small zirconium oxide clusters were discussed. We found that the ZrmO2m-1 clusters (not including Zr4O7) had the largest fragmentation energy among the clusters with the same number of zirconium atoms.
出处 《物理化学学报》 SCIE CAS CSCD 北大核心 2011年第5期1095-1102,共8页 Acta Physico-Chimica Sinica
基金 supported by the National Natural Science Foundation of China(10804027,11011140321)~~
关键词 密度泛函理论 氧化锆团簇 分解通道 成键规律 Density functional theory Zirconium oxide cluster Fragmentation channel Bonding regularity
  • 相关文献

参考文献40

  • 1Cox, P. A. Transition Metal Oxides; Clarendon: Oxford, 1992.
  • 2Rao, C. N.; Raveau, B. Transition Metal Oxides; Wiley: New York, 1998.
  • 3Hayashi, C.; Uyeda, R.; Tasaki, A. Ultra-Fine Particles; Noyes: Westwood, 1997.
  • 4Henrich, V. E.; Cox, P. A. The Surface Science of Metal Oxides; Cambridge University Press: Cambridge, 1994.
  • 5Somorjai, G. A. Introduction to Surface Chemistry and Catalysis; Wiley-Interscience: New York, 1994.
  • 6Gates, B. C. Chem. Rev. 1995, 95, 511.
  • 7Clair, T. P. S.; Goodman, D. W. Top. Catal. 2000, 13, 5.
  • 8Wallace, W. T.; Min, B. K.; Goodman, D. W. Top. Catal. 2005, 34, 17.
  • 9Jia, X. T.; Yang, W.; Qin, M. H.; Li, J. P, J. Magn. Magn. Mater. 2009. 321, 2354.
  • 10Zirconia Engineering Ceramics. in Key Engineering Materials; Kisi, E. Ed.; Trans Tech. Publications: Zurich, 1998; pp 153-154.

二级参考文献16

  • 1CHEN S G, YIN Y S, WANG D P. Experimental and theoretical investigation on the correlation between aqueous precursors structure and crystalline phases of zirconia [J]. J Mol Struct, 2004, 690(1-3):183-189.
  • 2GARVIE R C. The occurrence of metastable tetragonal zirconia as a crystallita size effect [J]. J Phy Chem, 1965, 69(4): 1 238-1 243.
  • 3WU F, YU S. Effects of H2SO4 on the crystallization and phase transformation of zirconia powder in the precipitation processes [J]. J Mater Sci, 1990, 25: 970-976.
  • 4CLEARFIELD A. Mechanism of hydrolytic polymerization of zirconyl solutions [J]. J Mater Res, 1990, 5(1): 161-162.
  • 5SRINIVASAN R, HUBBARD C R, CAVIN O B, et al. Factors determining the crystal phases of zirconia powders: a new outlook [J].Chem Mater, 1993, 5: 27-31.
  • 6FABRIS S, PAXTON A T, FINNIS M W. A stabilization mechanism of zirconia based on oxygen vacancies only[J]. Acta Mater, 2002,50(20): 5 171-5 178.
  • 7CHEN G, LI Z F, GONG X G Structure and growth modes of (BaO)n(n≤9) clusters [J]. J Chem Phys. 2002, 116(4): 1 339-1342.
  • 8FRISH M J, TRUCKS G W, SCHL EGEL H B, et al. Ganssian, A9 [R] Pittsburgh PA: Gaussian Inc, 1998.
  • 9LEE C, YANG W, PARR R G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J].Phys Rev B, 1988, 37(2): 785-789.
  • 10WADT W R, HAY P J. Ab initio effective core potentials for molecular calculations: potentials for main group elements sodium to bismuth [J]. J Chem Phys, 1985, 82(1): 284-298.

共引文献4

同被引文献377

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部