摘要
构造了与给定多边形相切的分段三次、五次和六次可调广义Ball曲线,所构造的曲线分别是C1,C2和C3连续,而且对切线多边形是保形的。曲线的所有控制点由切线多边形的顶点直接计算产生。给出了在保持公共连接点处相应连续的条件下内控制点的活动范围。曲线可以在一定范围内做局部修改。计算实例表明文中方法是灵活、方便、有效的。
This paper proposes an approach of constructing planar piecewise closed generalized Ball curve of degree 3,5 and 6 with all edges tangent to a given polygon and the curve segments can be joined together with C1,C2 and C3 continuity respectively.The control points of the generalized Ball curve segments are computed simply by the vertices of the given tangent polygon.The admissible scope of the inner control points is given.Local modifications for these curves are possible.Finally,a few numerical examples illustrate that the method given in this paper is effective for CAGD.
出处
《咸阳师范学院学报》
2011年第2期13-15,共3页
Journal of Xianyang Normal University
基金
安徽省高校优秀青年人才基金项目(2009SQRZ008)
合肥工业大学基金项目(2010HGXJ0084)
关键词
广义BALL曲线
切线多边形
保形
generalized Ball curve
tangent polygon
shape-preserving