期刊文献+

多元线性回归法确定橡胶Mooney-Rivlin模型常数 被引量:16

Determination of mechanics constants of Mooney-Rivlin model by using multilinear regression method
下载PDF
导出
摘要 根据丁苯橡胶试样在单轴拉伸实验中得到的拉力和变形值等实验数据,运用多元线性回归法求得橡胶材料Mooney-Rivlin模型三项式的模型常数。为检验计算结果的准确性,将常数用于对试样进行有限元计算并与实验结果对比分析,计算采用有限元软件ANSYS11.0,得到的计算结果与实验结果较为吻合。对比分析结果表明:随着形变量的增加,变形增量的有限元计算值对于实验值的相对误差逐渐减小并趋于稳定,说明采用多元线性回归法求解Mooney-Rivlin模型的常数是可行的。该方法也可推广至五项式和九项式Mooney-Rivlin模型常数的求解。 Based on the experimental results of pulls and deformations of uniaxially loaded SBR samples, the material constants of the three-parameter Mooney-Rivlin model of SBR were gained by using the multilinear regression method. In order to test the correctness of the computed results, the constants were employed to compute the samples with the finite element method, and then the computed results were compared and analyzed with the experimental ones. When the finite element software ANSYS 11.0 was used to compute, the results basically coincided with the experimental ones. The results of analysis show that with an increase in the deformations, the corresponding errors between the computed results and the experimental ones decrease and tend to stabilization. So it is feasible to determine the constants of Mooney-Rivlin model by using multilinear regression method. The method can also be introduced to solve the material constants of five-parameter Mooney-Rivlin model and nineparameter Mooney-Rivlin model.
出处 《海军工程大学学报》 CAS 北大核心 2011年第2期18-21,共4页 Journal of Naval University of Engineering
基金 国家自然科学基金资助项目(10572150)
关键词 超弹性 橡胶 Mooney-Rivlin模型 多元线性回归 有限元 hyperelastic rubber Mooney-Rivlin model multilinear regression finite element
  • 相关文献

参考文献8

二级参考文献94

  • 1Fazilay Laraba—Abbes,et a1.A lleW‘tailor-made’methodology for the mechanical belmvior analysis of rubber-like materials:Ⅱ.Application to the hyperelastic behaviour characterization of a carbon-black filled natural rubber vulcanizate[J].Polymer,2003,44(3):821-840.
  • 2Edvige Pueei.et a1.A note on the gent model for rubber-like materials[J].Rubber Chemistry and Technology,2002.5(5):839-851.
  • 3Marckmann G,Verron E et a1.A theory of network alteration for the Mullins effect[J].Journal of the mechanics and physics of solids, 2002.50:2 011-2 028.
  • 4Boyce M C and Arruda E M.Constitutive models of rubber elasticity:a review[J].Rubber chemistry and technology.2000,73(3):504-52.
  • 5Treloar L R G.The elasticity of a network of long chain molecules[J].Rubber Chenfistry And Technology,1943,16(4):746-751.
  • 6Treloar L R G.The elasticity of a network of long chain molecules[J].Rubber Chemistry And Technology,1943,17(2):296-302.
  • 7Treloar L R G.Physics of Rubber Elasticity[M].Oxford:University Press,1975.
  • 8Trdoar L R G.The mechanics of rubber elasticity[M].Proc R Soc Lond Ser A,1976,351:301—330.
  • 9Treloar L R G,Riding G.A non-gaumlan theory for rubber in biaxial strain.1.Mechanical properties[J].Proc R Soc Lond Ser A.1979.369:261-280.
  • 10Wu P D,van der Giessen E.On impmved3-D non-gauessian network models for rubber elasticity.Mech Res Commun.1992.19(5):427-433.

共引文献282

同被引文献132

引证文献16

二级引证文献39

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部