摘要
利用H1(Rn)的原子分解理论以及h1(Rn)(局部Hardy空间)的分子理论,证明了一类奇异积分算子从H1(Rn)到h1(Rn)有界.作为应用,得到了若A′∈L (R1),则Cauchy积分算子CA从H1(R1)到h1(R1)有界.
Proved in this paper is the boundedness of some singular integral operator from H1(Rn) to h1(Rn)(local Hardy space) by the atomic decomposition of H1(Rn) and the molecules of h1(Rn).As an application,proved in the paper is the boundedness of Cauchy integral operator CA from H1(R1) to h1(R1) with A′∈L (R1).
出处
《浙江教育学院学报》
2011年第1期92-95,共4页
Journal of ZHEJIANG Education Institute
基金
浙江省教育厅科研计划项目(Y201018469)