期刊文献+

基于RBF神经网络的轮式移动机器人轨迹跟踪控制 被引量:6

Tracking control of wheeled mobile robots based on RBF neural networks
下载PDF
导出
摘要 针对一类非完整移动机器人的轨迹跟踪控制系统,提出一种基于RBF神经网络的滑模控制与转矩控制相结合的智能控制方法。该方法同时考虑机器人运动学和动力学模型,通过RBF神经网络进行移动机器人运动过程学习,与速度误差结合构成力矩控制器,可保证闭环误差系统一致最终渐进稳定。采用基于李亚普诺夫(Lyapunov)稳定性理论的判稳方法,证明整个闭环控制系统的稳定性。仿真结果表明,该控制方案具有较强的鲁棒性。 An intelligent control strategy for trajectory tracking control system ofnonholonomic mobile robot is presented, which is the combination of sliding-mode control and torque control based on RBF neural networked control. Considering both kinematic and dyna- mical model, the RBF neural networks learn the process of mobile robot motion, and constitutes a torque controller combined with the speed error. The uniformly ultimately asymptotic stability of the closed loop error system can be obtained. The stability of entire closed loop system is proved by Lyapunov stability theory. The simulation results demonstrate that this control strategy has good robustness.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第5期1804-1806,1832,共4页 Computer Engineering and Design
基金 金陵科技学院校级自然科学基金项目(JIT-N-2007019)
关键词 非完整系统 轮式移动机器人 轨迹跟踪 滑模控制 RBF神经网络控制 nonholonomic system wheeled mobile robot trajectory tracking sliding-mode control RBF neural networked control
  • 相关文献

参考文献9

  • 1郁建中,刘钰,叶崧.非完整性约束移动机器人的鲁棒控制研究[J].金陵科技学院学报,2007,23(2):22-24. 被引量:3
  • 2Solea R,Filipescu A,Nunes U.Sliding-mode control for trajectory-tracking of a wheeled mobile robot in presence of uncertainties[J] .Neural Networks,2009(4): 1701 - 1706.
  • 3Kumar U,Sukavanam N.Backstepping based trajectory tracking control of a four wheeled mobile robot [J].International Journal of Advanced Robotic Systems,2008(5):403-410.
  • 4d'Andrea-Novel B,Campion G,Bastin G. Control of nonholonomic wheeled mobile robots by state feedback linearization[J].International Journal of Robotics Research,1995,14(6):543-559.
  • 5Jiang Xianhua. Predective fuzzy logic controller for trajectory tracking of a mobile robot[C].Espoo,Finland:IEEE Mid-Summer Workshop on Soft Computing in Industrial Applications,2005.
  • 6Staiano Antonino, Tagliaferri Roberto, Pedrycz Witold. Improving RBF networks performance in regression tasks by means of a supervised fuzzy clustering[J].Neural Networks,2005(2): 1-12.
  • 7Lee JH,Lin C,Lim H,et al.Sliding mode control for trajectory tracking of mobile robot in the RFID sensor space[C].7th ASIAN Control Conference, 2009:1701-1706.
  • 8Tarokh M,McDermott G J.Kinematics modeling and analyses of articulated rovers[J].IEEE Transactions on Robotics,2005,21 (4): 539-553.
  • 9Chang Y, Tan D L,Wang H G, et al.Kinematics analysis of a six- wheeled mobile robot[C]. Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. Piscataway, NJ,USA:IEEE,2006:4169- 4174.

二级参考文献4

共引文献2

同被引文献56

  • 1王福斌,刘杰,陈至坤,李书杰,曾秀丽,刘阔.基于RBF神经网络参数优化的挖掘机器人运动轨迹仿真[J].中国工程机械学报,2009,7(4):379-382. 被引量:2
  • 2孙炜,王耀南.模糊B样条基神经网络及其在机器人轨迹跟踪中的应用[J].动力学与控制学报,2005,3(1):56-61. 被引量:5
  • 3Dax T, Kar I N. Design and implementation of an adaptive fuzzy logic-based controller for wheeled mobile robots [J]. IEEE Transactions on Control Systems Technology, 2006, 14 (3) : 501-510.
  • 4Shahram K, Philippe P, Shahrokn S. An HIL-based reconfi-gureable platform for design, implementation and verifyeation of electrical system digital controllers [J]. IEEE Transactions on Industrial Electronnics, 2010, 57 (4): 1226-1236.
  • 5Quanser Consultina. Inc Q8 data acquisition system users guide version 1.2. [Z]. Markham, Ontario, Canada: Quanser Consulting, Inc, 2007.
  • 6Quanser Consultina, Inc Quanser Consultina, Inc. Qua- Re 1.2 User Manual [Z]. Markham, Ontario, Canada: Quanser Consulting, Inc, 2007.
  • 7Industrial mechatronic drives unit (IMDU) user mannual [Z]. Markham, Ontario, Canada: Quanser Consulting, Inc, 2007.
  • 8Yap C C,Lin C F,Chang K J. A brake strategy for an automatic parking system of vehicle[A].VPPC,2009.798-802.
  • 9Horii Masaki,Liu Kangzhi. Automatic parking benchmark problem:Experimental comparison of nonholonomic control methods[A].2007.608-612.
  • 10叶锦华,吴海彬,陈天炎.移动机器人运动控制系统研究[J].机械设计与制造,2008(6):145-147. 被引量:5

引证文献6

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部