期刊文献+

基于模糊小波神经网络的短波频率预测 被引量:16

A Prediction Method for HF Radio Communication Frequency based on FWNN
原文传递
导出
摘要 短波信道由于受电离层的非线性变化影响而不能及时选到最佳频率,严重制约了短波通信系统的效能发挥。为了提高短波频率预测及选频的准确性,在总结前人关于短波频率预测经验的基础上,结合人工智能技术在非线性时间序列预测方面取得的成就,提出了一种短波通信频率的预测方法,该方法结合相空间重构技术和模糊小波神经网络技术,并在数据预处理阶段采用奇异值分解对历史数据进行降噪处理,实验结果表明,该方法比其他预测方法的精度有很大的提高。 Due to the non-linear variety of the ionosphere,the accurate forecast of HF radio communication frequency is very difficult.In this paper,a prediction method for HF radio communication frequency is presented.The method,in combination of phase space reconstruction and fuzzy wavelet neural network and by using singular value decomposition,implements noise-reduction processing of the historic data in data pretreatment.The experimental result indicates that this method is of fairly high precision as compared with other prediction methods.
出处 《通信技术》 2011年第4期37-39,共3页 Communications Technology
关键词 短波通信频率预测 相空间重构 模糊小波神经网络 奇异值分解 HF radio communication frequency prediction phase space reconstruction fuzzy wavelet neural network singular value decomposition
  • 相关文献

参考文献7

  • 1陈铿,韩伯棠.混沌时间序列分析中的相空间重构技术综述[J].计算机科学,2005,32(4):67-70. 被引量:86
  • 2DU Zhigang, NIU Lin, ZHAO Jianguo. Application of Support Vector Regression Model based on Phase Space Reconstruction to Power System Wide-area Stability Prediction[C] //IPEC2007 8th International Power Engineering Conference. Singapore [s.n.], 2007:1371-1376.
  • 3彭春华.综合混沌相空间重构与相似性原理的铁路客流量预测[J].武汉理工大学学报(交通科学与工程版),2007,31(4):684-687. 被引量:4
  • 4TANG Yan, SUN Wei, WANG Yaonan, et al. Using Recurrent Fuzzy Wavelet Neural Network to Control AC Servo SystemiCS// CES/ IEEE. 5th International Power Electronics and Motion Control Conference. Shanghai:[s.n.],2007:866-869.
  • 5WANG Wei, LI Jianwei, CHEN Weimin. Fingerprint Classification Using Improved Directional Field and Fuzzy Wavelet Neural Network[C]//IEEE. Proceedings of the World Congress on Intelligent Control and Automation. Dalian:[s.n.], 2006 9961-9964.
  • 6PENG Jinzhu, WANG Yaonan, SUN Wei. Fuzzy Wavelet Neural Networks Control based on Hybrid Learning Algorithm[J] Journal of Hunan University Natural Sciences, 2006, 33(02):51-54.
  • 7彭金柱,王耀南,孙炜.基于混合学习算法的模糊小波神经网络控制[J].湖南大学学报(自然科学版),2006,33(2):51-54. 被引量:11

二级参考文献76

  • 1赵鸿,柴路,王浩,刘书声.互信息在时间序列分析中的应用[J].应用科学学报,1996,14(1):48-52. 被引量:11
  • 2王耀南,姚志红.神经网络自适应模糊控制器设计与应用[J].湖南大学学报(自然科学版),1996,23(1):101-106. 被引量:4
  • 3王耀南.智能控制系统-模糊控制·专家系统·神经网络控制[M].长沙:湖南大学出版社,1996..
  • 4Grassberger P,Procacia I. Measuring the strangeness of strange attractors [J]. Physica D, 1983,9:189~208
  • 5Gibson J F,Farmer J, Casdagli M,et al. An analytic approach to practical state space reconstruction [J]. Physica D, 1992,57:1 ~30
  • 6Sauer T, Yorke, Casdagli M. Embedology [J]. Journal of Statistical Physics, 1991,65:579~616
  • 7Widman G,Lehnertz K,Jansen P,et al. A fast general purpose algorithm for the computation of auto-and cross-correlation integrals from single channel data [J]. Physica D, 1998,121: 65~74
  • 8Albano A M,Muench J,Schwartz C,et al. Singular-value decomposition and the Grassberger-Procaccia algorithm [J]. Phys.Rev. A, 1988, 38:3017~3026
  • 9Kennel,Mathew B,Brown R,Abarbanel H D I. Determining embedding dimension for phase-space reconstruction using a geometrical construction [J]. Phy Rev A, 1992,45:3403~3411
  • 10Abarbanel H D I,Brown R,Sidorowich J J,et al. The analysis of observed chaotic data in physical systems [J]. Reviews of Modern Physics, 1993, 65(4):1331~1392

共引文献98

同被引文献106

引证文献16

二级引证文献57

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部